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Chapter 1

Introduction

Recent developments in machine learning have made significant contributions to a wide
range of fields that are not traditionally considered data science. Notably the Netflix competi-
tion have attracted a collective effort in developing models that greatly improved prediction of
movie ratings by different users, creating the best movie recommendation system at the time
[5]. Similar to the Netflix rating data, student grades in different courses follow the same struc-
ture, allowing the application of the same machine learning techniques. In this research course,
we intend to explore several of the machine learning techniques in applications to education.

Specifically, this research project aims to apply machine learning to analyze the student
grade dataset from [1], which contains complete transcripts of undergraduate students from
a major Canadian University. Similar to predicting user ratings, we are able to predict the
grades for courses. At the same time, we also will predict student’s course and major selection
choices. From the predictions, this project intends to analyze the effect of choosing easier
courses on student grades, specifically by comparing the predicted grades of courses students
did not take against the courses taken within the same program. By analyzing the variation
in course difficulty, these results could potentially improve curriculum design for educational
institutions and admission procedure for graduate programs.

This research report will be organized as follow. Chapter 2 will introduce feed-forward
neural networks in detail, including several techniques that can significantly improve training
results, as well as an example case using hand-written digits. Chapter 3 will introduce two
unsupervised learning algorithms that can be used to for a different purpose. Chapter 4 will
describe the experiments and the results we achieved using the student grade dataset.

1



Chapter 2

Supervised Learning

2.1 Feed-forward Neural Networks

We first consider a class of machine learning algorithms called supervised learning. In this
case we have a dataset D = {x[n],y[n]},x[n] ∈ RNin ,y[n] ∈ RNout , n ∈ N, with x as the input,
and y as the label or output. We want to find a model f(x,w) such that it is the “closest” to y,
with w the parameters in the model. This section will introduce neural networks as the model
f that predicts the labels y.

In the simplest case, neural networks can be reduced to a generalized linear model (GLM),
where the prediction is a linear combination of inputs but passed through a non-linear function:

f(x,w) = g

(
Nin∑
i=1

wixi + w0

)

Here g(·) is a non-linear function, with x is an N dimensional input vector, and w is the
weight vector, which includesw0 as the bias. Common choices of g(·), also known as activation
functions, for neural networks include the logistic (sigmoid) function, the hyperbolic tangent
function, and the rectified linear unit (ReLU):

glogistic(z) =
1

1 + e−z

gtanh(z) = tanh(z) =
1− e−2z

1 + e−2z

gReLU(z) = max(z, 0)

2



CHAPTER 2. SUPERVISED LEARNING 3

where z =
(∑N

i=1wixi + w0

)
denotes the linear combination for GLMs. Notice all of these

functions have simple derivatives, and specifically logistic and hyperbolic tangent functions are
monotonic and bounded by their horizontal asymptotes at infinities, which makes them great
choices for binary classification problems.

Graphically, this can be represented by a series of input nodes {xi} connected to an output
node f , with weights {wi} on the connections. Note bias is omitted from the graph but remains
a parameter.

Output
Node
f

Weights
wi

Input
Nodes
xi

Input x1 Input x2 Input x3Bias 1

Figure 2.1: A generalized linear model represented in graphical form. In a neural network,
this is also referred to as a single neuron.

A general feed-forward neural network is defined by recursive GLMs with different weights.
For example, a neural network with two hidden layers (three layers of recursion) is defined as:

h
(1)
j = g(1)

N(1)∑
i=1

w
(1)
ij xi + w

(1)
0j


h
(2)
k = g(2)

N(2)∑
j=1

w
(2)
jk h

(1)
j + w

(2)
0k


fl = g(3)

N(3)∑
k=1

w
(3)
kl h

(2)
k + w

(3)
0l


where g(·)(α) is some activation function, h(α)j denotes the j th node of the αth hidden layer,
w

(α)
ij denotes the weight for the connection of the ith node of the αth layer to the j th node of the

(α + 1)th layer, and N (α) denotes the number of nodes in the αth layer. Additionally, let N (4)

be the number of output nodes fl, and w =
[
w(1)w(2)w(3)

]
. Here we also note that N (1) is the
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number of input nodes.

Graphically, this structure has a very clear representation:

Output
fl

Weights
w

(3)
kl

Hidden
h
(2)
k

Weights
w

(2)
jk

Hidden
h
(1)
j

Weights
w

(1)
ij

Input
xi

Input x1 Input x2 Input x3 Input x4

Figure 2.2: A generalized feed-forward neural network with two hidden layers. Bias parame-
ters are not drawn for compactness, although they are present in all forward passing nodes.

While most GLMs do not admit a closed-form solution, a satisfactory optimization can
be achieved by the gradient descent method. In the neural network case, the optimization
becomes more difficult as the number of parameters increase with the number of nodes and
layers. However, we can still apply the gradient descent method and find a local optimum for
the simpler neural networks. [2]

Once again we have a dataset D = {x[n],y[n]}, n ∈ N, and we want to find a model
f(x,w) such that it is the “closest” to y. If the error function E(f,y) and the model f(x,w)

are differentiable with respect to w, the model can be optimized by gradient descent. In other
words, for any randomly initialized w0, an improvement wk+1 can be obtained by making a
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small modification in the direction of the gradient with respect to wk :

wk+1 = wk − η ∇wkE
(
f(x,wk),y

)
where η > 0 is hyper-parameter controlling the change of each optimization iteration, com-
monly called the learning rate. Note η is not part of the final model f(x,w), but it will signifi-
cantly influence optimization.

In the two hidden layer neural network previously, a derivative with respect to any weight
w

(α)
ij can be found by applying the chain rule to the derivatives. For example the derivative with

respect to w(2)
jk where j 6= 0 :

let z(α)j =
N(α)∑
i=1

w
(α)
ij h

(α−1)
i + w

(α)
0j

then
∂E

∂w
(2)
jk

=
N(4)∑
l=1

∂E

∂fl

∂fl

∂z
(3)
l

∂z
(3)
l

∂h
(2)
k

∂h
(2)
k

∂z
(2)
k

∂z
(2)
k

∂w
(2)
jk

=
N(4)∑
l=1

∂E

∂fl

∂g(3)(z
(3)
l )

∂z
(3)
l

w
(3)
kl

∂g(2)(z
(2)
k )

∂z
(2)
k

h
(1)
j .

Recall g(α)(·) is selected to have a simple derivative, making the complex appearing gradient
term above easy to compute.

2.2 Common Techniques to Improve Training

While the setup described in the previous section remains valid and works for simple cases,
several simple techniques can significantly improve the speed and quality of optimizing the
parameters in the neural network. It is important to note these techniques are also applicable
in unsupervised learning techniques in Section 3.

2.2.1 Mini-Batches

Since the computational complexity of the gradient∇wkE scales linearly with the data size,
and the data tends to be highly similar, it is acceptable to approximate the gradient using a
small portion of the data. The resulting algorithm is to first divide up the input data into
smaller batches, and then perform a gradient update for every mini-batch at random order.
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The algorithm is summarized as follows:

Initialize w0, k = 0;
Partition dataset D into N mini-batches {Dn}Nn=1 ;
repeat

Randomize the order of mini-batches {Dn′}Nn′=1 ;
for n′ = 1, . . . , N do

Use xn′ ,yn′ ∈ Dn′ ;
wk+1 = wk − η ∇wkE

(
f(xn′ ,wk),yn′

)
;

k = k + 1 ;

end
until convergence;

Algorithm 1: The Mini-Batch Gradient Descent

Using mini-batches takes away the need to perform updates after iterating through the entire
dataset, which significantly reduces the computational time.

2.2.2 Momentum and Adam

Instead of letting the gradient dictate the change in wk, the idea of momentum is to let the
gradient dictate the rate of change. If wk is interpreted as a coordinate, and each optimization
iteration as velocity, momentum can be seen as using the gradient as acceleration instead of
velocity. This allows the optimization to accumulate speed in a consistent direction of the
gradient, while making it harder to slow down and converge to a poor local minimum.

At the same time, momentum also improves the speed of convergence. It is well known
that for a convex optimization problem, the gradient descent method will converge at a rate
of O(k−1), where k is the number of iterations. The momentum technique is a special case
of Nesterov Acceleration [12], where the rate of convergence is O(k−2) for a strongly convex
objective function and a Lipschitz continuous gradient. Since the neural network objective
function is highly non-convex, the momentum method tends to perform better in practice.

The formulation starts with a velocity vector v0 initialized to zero, and the rest in similar:

vk+1 = θvk − η ∇wkE
(
f(x,wk),y

)
wk+1 = wk + vk+1

where θ ∈ [0, 1] is the hyper-parameter deciding the preservation of momentum. Here choosing
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a larger θ would result in a stronger preservation of the velocity vector v, which then retains
more momentum.

Recently, many new algorithms are developed for adaptively adjusting the gradient and
momentum. Here we highlight one specific algorithm called Adam [8], where the authors here
choose to work with an exponential moving average of the gradient and its second moment. In
this case, a momentum-like result is achieved with the moving average, and the direction of the
gradient is scaled by the curvature as well.

To specific the algorithm we require a learning rate η, exponential moving average decay
parameters β1, β2, and lower bound on second moment ε. Here we denote (gk)2 = gk � gk as
the element wise square, and βk1 = (β1)

k as the kth power. The Adam algorithm then follows

Initialize w0, k = 0,m0 = 0,v0 = 0;
repeat

Use x,y ∈ D ;
Compute gradient
gk+1 = ∇wkE

(
f(x,wk),y

)
;

Compute the first and second moment exponential moving average
mk+1 = β1m

k + (1− β1)gk+1 ;
vk+1 = β2v

k + (1− β2)(gk+1)2 ;
Correct for bias
m̂k+1 = mk+1/(1− βk1 ) ;
v̂k+1 = vk+1/(1− βk2 ) ;
Update parameters
wk+1 = wk − η m̂k+1

/(√
v̂k+1 + ε

)
;

k = k + 1 ;

until convergence;
Algorithm 2: Adam Algorithm

Observe when gk is consistently small, we would have a small mk, however it will be
divided by a small vk as well, adjusting for slow down in convergence.

2.2.3 Dropout

Another common issue for neural networks is over-fitting. Due to the large number of pa-
rameters, a neural network can tend to “store” the entire dataset into its parameters, hence
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over-fitting the training dataset. While regularization and early stopping are used for prevent-
ing this issue, we explore a simple yet highly effective technique called dropout [16].

The motivation for dropout comes from ensemble methods, where multiple model pre-
dictions are averaged, with each model weighted by its posterior probability given the data.
Ensembles are highly successful when a large number of distinct models can be generated
with relative low computation. A notable example is random forests [3] where each model is
a simple decision tree. For neural networks, the simplest method to create distinct models is
by considering different model architectures. However this is difficult to apply directly due
to the computational cost of optimizing even one neural network. More recently, authors in
[6] showed that dropout objective is minimizing the Kullback-Leibler divergence between an
approximate model and a deep Gaussian process model in [4]. Mathematically, this explains
how dropout can avoid model over-fitting.

Dropout is the method that attempts to incorporate random neural network architecture into
the same training procedure. The technique specifically refers to “dropping out” some of the
hidden units with some probability p ∈ [0, 1], creating a random structure for each gradient
descent iteration.

Specifically recall the feed-forward neural network, where we originally had

h
(α)
k = g(α)

N(α)∑
j=1

w
(α)
jk h

(α−1)
j + w

(α)
0k


Here for each gradient descent iteration, we introduce a list of Bernoulli random variables

r
(α−1)
j ∼Bernoulli(1− p), and modify the previous equation to

h
(α)
k = g(α)

N(α)∑
j=1

w
(α)
jk h

(α−1)
j r

(α−1)
j + w

(α)
0k



Observe that with probability p, each hidden node h(α−1)j will be set to zero, hence creating
a random structure. We also observe that since if the node h(α−1)j is dropped, we have that the
parameter w(α)

jk stays unchanged for this iteration, since the hidden node h(α−1)j does not affect
the objective function for this iteration. Similarly, all the parameters w(α−1)

ij ,∀i intended for
the nodes leading up to h(α−1)j remain unchanged as well.
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2.2.4 Batch Normalization

Finally, a significant hurdle in training neural networks is the constantly changing distribu-
tion of each layer’s input during training, as the parameters of the previous layer changes. This
results in the gradient descent method struggling to optimize each layer at the same rate. Previ-
ously, most optimization is done by manually tuning the learning rate separately for each layer,
which is notoriously difficult. Authors in [7] propose a simple adjustment to resolve the issue,
namely batch normalization. The idea is to normalize each layer’s input to have a standard
mean and variance before activation, controlling the distribution of different layers.

Consider our feed-forward activation as before

z
(α)
k =

N(α)∑
j=1

w
(α−1)
jk h

(α−1)
j r

(α−1)
j + w

(α)
0k

h
(α)
k = g(α)

(
z
(α)
k

)

Now instead of using z(α)k directly, we want to normalize it to ẑ(α)k where Eẑ(α)k = 0 and
V ar[ẑ

(α)
k ] = 1. To approximate this in a mini-batch setting, we consider all the values before

activation in the same mini-batch {z(α)k (i)}Bi=1, where B is the size of the mini-batch, and we
normalize it according to its sample mean and variance. Specifically

Before each activation
Compute the pre-activation values for each i in the mini-batch
z
(α)
k (i) =

∑N(α)

j=1 w
(α−1)
jk h

(α−1)
j (i)r

(α−1)
j + w

(α)
0k ;

Compute the sample mean and variance of the batch
µ
(α)
k = 1

B

∑B
i=1 z

(α)
k (i);

σ
(α)
k =

√
1
B

∑B
i=1

[
z
(α)
k (i)− µ(α)

k

]2
;

Normalize the pre-activation values and compute activation outputs
ẑ
(α)
k (i) =

[
z
(α)
k (i)− µ(α)

k

]
/σ

(α)
k ;

h
(α)
k = g(α)

(
ẑ
(α)
k

)
Algorithm 3: The Batch Normalization Algorithm
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2.3 MNIST Hand-Written Digits Example

The Mixed National Institute of Standards and Technology (MNIST) dataset [10] is a collec-
tion of images of hand-written digits from various sources, with each image labeled the correct
digit. The dataset contains 60,000 images for training (fitting), and 10,000 images for testing.
The images are 28x28 in resolution, hence making N (1) = 784 dimensions in input.

The data labels are changed to use the 1-of-K encoding scheme, where the label y is a
binary vector of size K, with only one element taking a value of one. In this case, given 10
possible digits, we have a vector of size Nout = 10, where we coincidentally also chose 10
layers. For example, a possible scheme can label the digit “3” using the vector [0, 0, 1, 0, . . .]
where only the 3rd index is a “1”.

To best model this type of label vector, the softmax function is chosen for the output layer:

fl = g(9)(z
(9)
l ) =

exp(z
(9)
l )∑N(10)

k=1 exp(z
(9)
k )

where z(9)l =
∑N(9)

k=1 w
(9)
kl h

(8)
k + w

(9)
0l is a linear combination of the final hidden layer. Since the

denominator normalizes the sum, the fl now adds up to one, and a “perfect” output is exactly
the 1-of-K encoded label. If fl is modeled as the probability of the image being digit l, suppose
the correct digit is m, then the likelihood of making the correct prediction is:

L(f ,y) = fm =
N(10)∏
l=1

fl
yl

since ym = 1 is the only non-zero term in the label vector. We can then define the error function
as negative log-likelihood:

E(f ,y) = − log
Nout∏
l=1

fl
yl = −

Nout∑
l=1

yl log fl

where Nout is the number of output nodes, and minimizing E is equivalent to maximizing
likelihood. Note taking the logarithm creates an error function with much simpler derivative,
hence simplifying the gradient descent method.

In the following experiment, several different architectures are used to model the MNIST
digits. For example, we denote N (2) = N (3) = . . . = N (9) = 500 nodes in the hidden layers,
creating a structure of 784− 500− . . .− 500− 10

(
N (1) −N (2) − . . .−N (10)

)
nodes in each
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layer. We also chose g(1)(·) = . . . = g(9)(·) = gReLU(·) in the hidden layers, and softmax
for the output layer. For all the experiments on MNIST dataset, we use mini-batches, Adam,
dropout, and batch normalization altogether. The hyper parameters were chosen as η = 10−1

for the learning rate, β1 = 0.9, β2 = 0.999, ε = 10−8 for batch normalization, and p = 0.3

for dropout rate. We also chose to update the weight vector wk once for every 100 samples of
digits, also known as a mini-batch.

After training (optimizing) for 100 epochs, with each epoch denoting one complete run
through of the training dataset, we reach a test error rate of 0.43% ( Figure 2.3). We highlight

Figure 2.3: MNIST hand-written digits modeled using a 8 hidden layer neural network, with
negative log-likelihood and classification error rate computed after each epoch.

that the impressive classification results on MNIST digits is highly motivating for applications
on different problems.

We also note that scaling to higher number of layers and nodes yields diminishing returns.
From Table 2.1, we observe that 6 hidden layers can achieve practically the same result as 8
hidden layers.
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Hidden Layers Nodes in Each Hidden Layer Test Error Rate
4 500 0.70%
4 1000 0.57%
6 500 0.44%
8 500 0.43%

Table 2.1: MNIST hand-written digits test results with different neural networks.

While this type of neural networks is feed-forward, which mean it is limited to only su-
pervised type problems where the data structure is consistent and a prediction target (label)
is provided for each sample. For a collaborative filtering type problem, the inference is often
made within the data structure itself, which makes an unsupervised learning problem. Feed-
forward neural networks also fail to fully utilize the datasets that are partly labeled, known as
semi-supervised problems. These problems would require other variations of neural networks
with different methods for inference.



Chapter 3

Unsupervised Learning

3.1 Restricted Boltzmann Machines

On the other hand, restricted Boltzmann machines (RBM) is a completely different approach
to problems without labels. RBM is a type of unsupervised learning algorithm, for there are no
labels to “supervise” the learning. The purpose of unsupervised algorithms are to find structural
patterns within the data itself. In this case, we are interested in the relationships between the
performance in difference courses, and how this helps us predict the grades.

A RBM is a Markov random field in the form of a bipartite graph, where the joint proba-
bility follows a Boltzmann type distribution. The bipartite graph structure creates two layers
without internal connections. One layer, called the visible layer, contain the input data; in this
case, the visible values are the grades of each student. These nodes are connected to the other
layer, called the hidden layer, with symmetrical weighted connections.

Suppose the graph have N visible nodes and M hidden nodes, with each visible node
denoted vi, hidden nodes denoted hj , weights between two nodes wij , bi and aj be bias param-
eters, and σi be the standard deviation of grades for each course. Here each visible node vi rep-
resents the grade for course i, where a specific student is fixed. Let θ = {wij, aj, bi, σi} ∀i, j,
v = {vi} ∀i, and h = {hj} ∀j denote the collections. Additionally, we let the hidden nodes
only take on binary values, i.e. vi ∈ R, hj ∈ {0, 1}. We can then define the energy function

13
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Hidden
Nodes
hj

Weights
wij

Visible
Nodes
vi

Grade 1 Grade 2 Grade 3 Grade 4

Figure 3.1: A restricted Boltzmann machine (RBM) with 4 courses and 5 hidden nodes for a
specific student.

and the joint distribution for the graph:

E(v,h|θ) =
N∑
i=1

(bi − vi)2

2σi
−

N∑
i=1

M∑
j=1

wijhj
vi
σi
−

M∑
i=j

ajhj

P (v,h|θ) = exp [−E(v,h|θ)]
Z

where Z is the partition function normalizing the distribution. After marginalizing over the
hidden nodes h, we can find the gradient of the likelihood function with respect to the parame-
ters θ to perform steepest descent optimization. Finding the gradient requires the use of Gibbs
sampling, although [15] showed the approximate gradient after very few iterations of Gibbs
sampling is sufficient for optimization.

∂P (v|θ)
∂wij

= Edata(vihj)− Emodel(vihj)

where Edata refers to expectation of observing the case within data, and Emodel is the expec-
tation of the current model with parameters θ. Instead of using Gibbs sampling until conver-
gence to find Emodel, [15] uses k iterations for a very good approximation of the gradient. This
method is referred to contrastive divergence (CD) by the authors in [15], where CD-k refers to
k iterations used in Gibbs sampling. As a result, we have a very good algorithm optimize the
RBM for likelihood.

To perform inference on a missing grade value, one simply include an additional “visible”
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node vp, where the value is not known, but can be determined by the energy function:

P (vp|v) ∝
∑
h

exp[−E(vp,v,h)]

=
M∏
j=1

(
1 + exp

[
N∑
i=1

wijvi

])

Alternatively, we can also treat the RBM weights as the weights for an autoencoder, which
will be discussed in the next section.

3.2 Denoising Autoencoders

Another approach to unsupervised learning is using autoencoders (AEs), specifically in this
case we will introduce the denoising autoencoders (DAEs) in [17]. The autoencoder is a com-
pression model of input data, such that a high dimensional input can be encoded as a low
dimensional representation, where the data can be reconstructed from the representation using
a decoder.

For this problem we consider a dataset D = {x[n]},x[n] ∈ RNin , n ∈ N, with only x as
the input. We also define a desired feature h ∈ RNfeat with Nfeat < Nin, and an encoder-
decoder pair f(x,w(1)), g(h,w(2)) such that the reconstruction x̂ = g ◦ f(x) ≈ x. This
results in a forced compression of input x into lower dimensional h, and in the process, the
parameterization w retains further information about the data structure.
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Reconstruction
x̂l

Weights
w
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Figure 3.2: An one layer autoencoder with 4 input nodes and 3 representation nodes.

With this setup, we have a neural network described as in Figure 3.2. In this structure, we
can optimize for the optimal parameters {w(1),w(2)} using the gradient descent approach from
feedforward neural networks 2.1. In practice, tied weights condition w(1) = [w(2)]> is often
enforced to start the optimization. Observe that when the weights are tied and the non-linear
activation function is sigmoid, we have a striking similarity with the RBM: the representation
h is exactly the probability of binary hidden layer sampled as 1.

However as [17] explained, pure compression retains insufficient information, especially
when compared to RBMs; therefore the authors introduced a new optimization criterion: re-
construction from noisy inputs. Formally, we have a corruption function q that creates noisy
inputs v = q(x). A popular choice of q is to randomly set a fraction of the input dimensions to
zero.

To motivate denoising autoencoders, we consider an example with 2 inputs, i.e. x =

{x1, x2}, and let x1 ≈ φ(x2) for some bijection φ. When x1 is set to zero due to corruption, it
remains possible to reconstruct x1 by learning the relationship between x1 and x2, which gives
us x̂1 = φ(x2). Similarly, when x2 is corrupted, ideally we can have x̂2 = φ−1(x1).
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Figure 3.3: An one layer denoising autoencoder with 4 input nodes, 3 representation nodes,
and symmetric weights. In this case, we have the third input corrupted by setting to zero.



Chapter 4

Experiment Results

4.1 Classification of Student Majors

Our first experiment involves the prediction of a student’s choice of majors. Specifically,
we define the input data to be the course grades of the student in the first two years of studies,
and the label of each student to be the major. Specifically, we filter for only the courses for
each student during the two years of enrollment, and predict the most department of which the
most courses were taken from after the first two years. Since the task at hand is a classification
problem, we will use the negative log-likelihood loss function introduced in Section 2.3.

We can see the training progress in Figure 4.1. Here we can observe the best error rate
was reached around 45%. We can also observe that even with using Dropout, there remains
a significant difference between training results and test results. It is highly probable that the
training data is simply not rich enough to capture the structure of student grades. To confirm
the suspicion, we can compare the classification results for different architecture choices.

From Table 4.1, we can observe that even with one hidden layer of 100 nodes, we have
already reached very close to the best result. In fact, with hidden nodes and layers, the results
can actually get worse. These results highlight the difficulty of predicting student majors only
based on the first two years of courses.

Instead of using the student’s grades, we can also attempt to predict with only the list of
courses the student took and achieve the exact same result as the table below. This is important
because it implies that the neural network did not taken into account the information with the
student’s grades.

18
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Figure 4.1: Training progress for predicting student majors. Here the hyper-parameters include
a learning rate of η = 10−2, mini-batch size of 1000, a neural network structure of 3598−500−
500 − 47, with ReLU activation in the hidden layers, softmax activation in the output layer,
negative log-likelihood objective, a dropout rate of 0.5, and trained for 200 epochs using Adam
algorithm.

Hidden Layers Nodes in Each Hidden Layer Test Error Rate

1 100 45.3%
1 500 45.8%
1 1000 45.8%

2 100 45.5%
2 500 44.8%
2 1000 45.1%

4 500 45.5%
6 500 47.8%
8 500 49.1%

Table 4.1: Prediction of student majors test results with different neural networks.
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4.2 Prediction of Course Selection

We then move onto predicting whether or not a student will select to take an upper year
course. Specifically, using only the courses during the first two years of enrollment, we want to
predict all the courses that a student will take. In this case we will need to choose use a slightly
different likelihood function as objective.

E(f ,y) = − 1

Ntaken

Nout∑
l=1

yl log fl −
1

Nout −Ntaken

Nout∑
l=1

(1− yl) log(1− fl)

Observe in the above equation, what we have instead of the previous negative log-likelihood,
we have an objective function equally punishing to both false positive and false negative errors.
That is, the objective will equally punish both when the student does not take a course and we
predict true, and when the student does take a course and we predict false. Evaluating such an
objective will discourage the neural network to converge to a degenerate case where prediction
is all true or all false.

Hidden Layers Hidden Nodes False Negative False Positive
1 100 1.63% 44.86%
1 500 1.76% 45.87%
1 1000 2.05% 45.38%
2 100 2.04% 44.86%
2 500 1.76% 42.81%
2 1000 2.02% 41.64%
4 500 1.90% 33.73%
4 1000 2.07% 34.40%
6 500 2.16% 30.52%
6 1000 2.41% 29.51%

Table 4.2: Prediction of student course selection test results with different neural networks.

Observe the results in 4.2, we have that limiting the false negative rate is a much simpler
task than false positives. This is a clear since a student often takes around 40 courses in an
undergraduate degree, while there are over 4000 course choices to predict from. The fact that
we are limiting false positives below 50% alone is implying that our model cannot be guessing
to achieve a 2% false negative rate.

Unlike predicting student majors, prediction errors here clearly scales with a larger neural
network. However, a false positive error rate of 30% implies that the current model tends to
predict the student will take a very large pool of courses. Depending on the exact criterion of
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a good prediction, it may be helpful to place regularization on the total number of courses the
model predicts the student to take.

4.3 Prediction of Student Grades

Similar to predicting whether a student will take a course in the future, we are also interested
in predicting the grade of such a course. To make such a prediction, we opt for unsupervised
learning algorithms. We have introduced restricted Boltzmann machine (RBM) and denoising
auto-encoder (DAE) in Section 3, and these methods fit the task of filling in missing data.

To frame the problem of predicting a student’s grade in the form of reconstruction, we
simply assume the course that we are trying predict is a “missing” data point. With RBM or
DAE reconstructing the missing data point, we are able to predict the missing grade.

We train both the RBM and DAE with a learning rate of η = 10−4, momentum constant
of θ = 0.9, batch size of 100, and for 100 epochs using the root mean squared error (RMSE)
objective. For the RBM, we progressively increased the number of Gibbs iterations as 2, 5, 15
over training time. For the DAE, we used a noise level of p = 0.3.

Hidden Nodes RBM RMSE DAE RMSE
20 11.52% 20.57%
50 11.77% 18.64%
100 13.29% 17.98%
200 14.81% 19.38%

Table 4.3: Prediction of student course grade test results with different neural networks.

From Table 4.3, we can see that not only does more hidden nodes not necessarily help in
this case, it may made the network more difficult to train. At the same time, we can see that pre-
dicting grades is once again a difficult task, as even the best RMSE is at 11.52%. Suppose that
the error is normally distributed, this implies at least 30% of the time, the prediction is worse
than 11.52%. Further improvements are definitely possible to these models with other types
of modifications by stacking RBMs and DAEs [13, 17], or alternatively using a variational
auto-encoder [9].
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