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Abstract

We propose a novel approach to analyze generalization error for discretizations of Langevin
diffusion, such as the stochastic gradient Langevin dynamics (SGLD). For an ε tolerance of ex-
pected generalization error, it is known that a first order discretization can reach this target if we
run Ω(ε−1 log(ε−1)) iterations with Ω(ε−1) samples. In this article, we show that with additional
smoothness assumptions, even first order methods can achieve arbitrarily good dependence on
ε. More precisely, for a sufficiently smooth potential function and all N > 0, we show a first
order discretization can reach ε expected generalization error given Ω(ε−1/N log(ε−1)) iterations
with Ω(ε−1) samples.
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1 Introduction

Let f : Rd ×Z → R be a known loss function with respect to parameters x ∈ Rd and a single data
point z ∈ Z. We define F (x) := E f(x, z) where the expectation is over z ∼ D for an unknown
distribution D over Z. We consider the problem of minimizing an expected loss function

min
x∈Rd

F (x) . (1.1)

Since the distribution is unknown, we rely on a sample of n-independent and identically dis-
tributed (i.i.d.) data points z = {zi}ni=1 ∼ Dn, and evaluate the empirical loss function denoted by
Fz(x) := 1

n

∑n
i=1 f(x, zi). In this setting, a learning algorithm is a random map X : Zn → Rd, and

we use Xz to denote the output. Since the empirical loss Fz(Xz) can be evaluated, it remains to
study the expected generalization error

EF (Xz)− EFz(Xz) , (1.2)

where the expectation is over both the randomness of X and z ∼ Dn.
In this article, we are interested in the class of algorithms that can be viewed as a discretization

of the (overdamped) Langevin diffusion, defined by the stochastic differential equation (SDE)

dX(t) = −∇Fz(X(t)) dt+

√
2

β
dW (t) , (1.3)

where β > 0 is the inverse temperature parameter, and {W (t)}t≥0 is a standard Brownian motion
in Rd. It is well known that the Langevin diffusion converges (as t→∞) to the Gibbs distribution
ρz(x) ∝ exp(−βFz(x)) (Bakry et al., 2013). Furthermore, using the uniform stability condition
introduced by Bousquet and Elisseeff (2002), the Gibbs distribution is shown to have generalization
error O(n−1) (Raginsky et al., 2017). Many optimization results also rely on the Gibbs distribution’s
minimizing property (Raginsky et al., 2017; Xu et al., 2017; Erdogdu et al., 2018).
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Using this approach, Xu et al. (2017) have shown a first order discretization of the Langevin
diffusion with step size η > 0, the approximation error between the algorithm and the Gibbs distri-
bution is on the order of O(e−Ω(kη)+η), where k > 0 is the number of iterations. In terms of runtime
complexity for an ε tolerance on generalization error, this implies we need k ≥ Ω(ε−1 log ε−1) and
n ≥ Ω(ε−1). This approach corresponds to the top path of approximation steps to generalization
error in Figure 1.

E ρz(Fz) E ρz(F )

EFz(Xz,∞) EF (Xz,∞)

EπNz (Fz) EπNz (F )

O(η)

O(1/n)

O(η)

O(ηN)

O(1/n)

O(ηN)

Higher Order Approximation

Figure 1: Overview of approximation steps taken to bound the generalization error
EFz(Xz,∞) − EF (Xz,∞). Here we use Xz,∞ to denote a sample from the stationary distri-
bution, O(·) to display an approximation error bound with dependence on step size η and
number of samples n, and ρz(F ) to denote the integral

∫
F dρz.

In contrast to previous works, our approach avoids viewing first order methods as a discretization
of Langevin diffusion. Instead, we view first order methods as higher order discretizations of a
modified process, which we construct via weak backward error analysis (Debussche and Faou, 2011;
Kopec, 2013, 2015). With the explicit construction, we can recover the stationary distribution
πNz of the modified process, which approximates the first order methods to order O(ηN ), where
N > 0 depends on the smoothness of f(·, z). Then our main result establishes a generalization
bound of O(n−1) for this distribution πNz , which is of the same order as Gibbs. As a result, our
approach shows that the generalization property of Gibbs is actually a generic property of Poisson
equations. Putting these together, our results imply a runtime complexity of k ≥ Ω(ε−1/N log ε−1)
while keeping the same sample complexity of n ≥ Ω(ε−1). This is described in the bottom path in
Figure 1.

We summarize our main contributions as follows. We provide an explicit construction of the
modified process approximating SGLD, as well as the stationary distribution πNz , up to an error
of order O(ηN ). Under additional smoothness conditions, we provide an improved generalization
bound for first order discretizations of Langevin diffusion.

The rest of the article is organized as follows. We discuss related works and comparison next
in Section 1.1. In Section 2, we introduce the precise notation and main results. In Section 3, we
provide an overview of the proofs, deferring technical details to the appendix. In Section 4, we
discuss the assumptions and further extensions of this work. In Sections 5 to 7, we provide the
proof of the main results in full detail.

1.1 Related Works

Langevin algorithms for sampling and optimization have been very well studied (Gelfand and
Mitter, 1991; Raginsky et al., 2017; Cheng et al., 2018; Dalalyan and Karagulyan, 2019; Durmus
and Moulines, 2017; Erdogdu et al., 2018; Li et al., 2019; Vempala and Wibisono, 2019; Erdogdu and
Hosseinzadeh, 2020). Most of these articles establish approximations using the Langevin diffusion,
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either in finite time or in terms of stationary distributions. In particular, several existing works
have studied the approximation of stationary distributions (Talay and Tubaro, 1990; Mattingly
et al., 2010; Erdogdu et al., 2018). This line of work is most similar to our approach in studying
the error in the distributional sense.

Paper Regularity Assumptions
Steps k ≥ Ω(·) to reach
ε generalization error

Raginsky et al. (2017) Gradient Lipschitz ε−4(log(ε−1))3

Xu et al. (2017) Gradient Lipschitz ε−1 log(ε−1)

Erdogdu et al. (2018) f(·, z) ∈ C4
pol ε−2

Present Work Gradient Lipschitz, f(·, z) ∈ C6N+2
pol ε−1/N log(ε−1)

Table 1: Comparison of the assumptions and resulting runtime complexities to reach ε ap-
proximation error by recent works. Here C`

pol denotes the space of C` functions where all
derivatives have polynomial growth, and Ω( · ) notation hides constants independent of ε. We
emphasize that all previous works have approximated the Langevin algorithm using the Gibbs
density, while the present work constructs a modified density. We provide precise details on
assumptions and results in Section 2.

The idea of backward error analysis traces back to the study of numerical linear algebra (Wilkin-
son, 1960) and numerical methods for ordinary differential equations (ODEs) (Hairer et al., 2006).
This approach views each update step of a numerical algorithm as the exact solution of a modi-
fied differential equation. For example, if we solve the ODE y′(t) = y(t)2 with the Euler update
yk+1 = yk + ηy2

k for some η > 0, then the modified equation can be written as an infinite series
(Hairer et al., 2006, Chapter IX, Example 1.1)

ỹ′ = ỹ2 − ηỹ3 + η2 3

2
ỹ4 − η3 8

3
ỹ5 + η4 31

6
ỹ6 + · · · ,

where given initial condition ỹ(0) = yk, we will have that ỹ(η) = yk+1.
However, directly extending this construction to SDEs pathwise is not straightforward (Shard-

low, 2006). Instead, Debussche and Faou (2011) introduced a construction approximating the
numerical method in distribution. The authors derived a partial differential equation (PDE) de-
scribing the evolution of the distribution for the numerical algorithm, and consequently the station-
ary distribution as well. We will provide more details in Section 3. This work has been extended to
implicit Langevin algorithms (Kopec, 2013, 2015), higher order discretizations (Abdulle et al., 2012,
2014; Laurent and Vilmart, 2020), and stochastic Hamiltonian systems with symplectic schemes
(Wang et al., 2016; Anton, 2017, 2019).

We summarize a comparison of related approximation results for SGLD in Table 1.

2 Main Results

Throughout the article we denote the Euclidean inner product by 〈x, y〉 for x, y ∈ Rd, and the
corresponding norm by |x| := 〈x, x〉1/2. Unless otherwise specified, all expectations E[ · ] are with
respect to all sources of randomness including z. We denote the conditional expectation on a
random variable using the subscript notation, more precisely we use Ez[ · ] := E[ · |z]. For any
measure or density π on Rd, we denote the integral

∫
φdπ as π(φ).
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Given a multi-index α = (α1, . . . , αd) ∈ Nd, we define |α| = α1 + · · · + αd. For any function
φ ∈ C∞(Rd), we define the short hand derivative notation ∂αφ(x) = (∂x1)α1 · · · (∂xd)αdφ(x). For
all `, k ∈ N, we also define the function norm ‖φ‖`,k := sup|α|≤` supx∈Rd |∂αφ(x)|(1 + |x|k)−1. This

leads to the natural function space C`k(Rd) := {φ ∈ C`(Rd) : ‖φ‖`,k <∞}.
We are now ready to state the main assumptions on the loss function f(x, z).

Assumption 2.1 (Regularity). There exists positive integers N, ` such that f(·, z) ∈ C6N+2
` (Rd)

and supz∈Z ‖f(·, z)‖6N+2,` <∞. Furthermore, there exists a constant M > 0 such that

|∇f(x, z)−∇f(y, z)| ≤M |x− y| , ∀x, y ∈ Rd . (2.1)

Without loss of generality, this assumption implies for each α ∈ Nd with |α| ≤ 6N + 2, there
exists a constant Mα > 0 such that supz∈Z |∂αf(x, z)| ≤ Mα(1 + |x|`). For each k ∈ N, we define
Mk =

∑
|α|=kMα.

Assumption 2.2 (Dissipative). There exist constants m > 0 and b ≥ 0 such that

〈x,∇f(x, z)〉 ≥ m |x|2 − b, ∀x ∈ Rd, z ∈ Z. (2.2)

We remark this is a commonly used sufficient condition for exponential convergence of Langevin
diffusion (Raginsky et al., 2017; Bakry et al., 2008), and it can be replaced by any other sufficient
condition (Villani, 2009; Bakry et al., 2013).

We define stochastic gradient Langevin dynamics (SGLD) by the following update rule

Xk+1 = Xk − η∇Fζk(Xk) +

√
2η

β
ξk , (2.3)

where X0 = x ∈ Rd is a deterministic initial condition, η > 0 is a constant step size (or learning
rate), β > 0 is the inverse temperature parameter, {ζk}k∈N are uniform (minibatch) subsamples
of z (with replacement) of size nb ≤ n, and {ξk}k∈N are i.i.d. samples from N (0, Id). Here we let
{ζk}k∈N, {ξk}k∈N be independent conditioned on z.

We are ready to state our first main result.

Theorem 2.3 (Approximation of SGLD). Suppose f(x, z) satisfies Assumption 2.1 and 2.2 with
order of approximation N ∈ N. Then there exist positive constants C, λ, `′ (depending on N), such
for all step sizes 0 < η < 2m

M2 and z ∈ Zn, we can construct a modified stationary measure πNz , with

the property that for all steps k ≥ 0, initial condition X0 = x, and test function φ ∈ C6N+2
` (Rd),

the following approximation bound on the SGLD algorithm {Xk}k≥0 (2.3) holds∣∣Ez φ(Xk)− πNz (φ)
∣∣ ≤ C (e−λkη/2 + ηN

)
(1 + |x|)`′ ‖φ− ρz(φ)‖6N+2,` . (2.4)

In particular, the above result holds for φ ∈ {F, Fz}.

The full proof can be found in Section 5.
Our second main result is on bounding the generalization error of the approximate stationary

distribution. Here we note that beyond SGLD, many discretizations of Langevin diffusion admits
a higher order approximate stationary distribution πNz via the same weak backward error analy-
sis construction. In particular, the implicit Euler method (Kopec, 2013) and weak Runge-Kutta
methods (Laurent and Vilmart, 2020) are well studied. Therefore, we state the result for all such
methods.
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Theorem 2.4 (Generalization Bound of πNz ). Suppose {Xk}k≥0 is any discretization of Langevin
diffusion (1.3) with an approximate stationary distribution πNz as in Theorem 2.3. Then there exists
a constant C > 0 (depending on N), such that for all choices of k, n and η ∈ (0, 1) the following
expected generalization bound holds∣∣E [πNz (F )− πNz (Fz)

] ∣∣ ≤ C

n(1− η)
, (2.5)

where the expectation is with respect to z ∼ Dn.

The full proof can be found in Section 6. As a corollary of the two results, we have a runtime
complexity as follows.

Corollary 2.5 (Runtime Complexity). Suppose {Xk}k≥0 is any discretization of Langevin diffusion
(1.3) admiting an approximate stationary distribution πNz of the type in Theorem 2.3. Then there
exists a constant C > 0 (depending on N), such that for all

ε > 0 , 0 < η <
2m

M2
, n ≥ C

ε(1− η)
, k ≥ C

ε1/N
log

1

ε
, (2.6)

we achieve the following expected generalization bound

|E [F (Xk)− Fz(Xk)] | ≤ ε . (2.7)

The proof can be found in Section 7. Once again, we remark this implies a runtime complexity
of k ≥ Ω(ε−1/N log(ε−1)) despite {Xk}k≥0 being a first order discretization of Langevin diffusion.

3 Proof Overview

In this section, we provide a sketch of the main results. Here we omit most of the technical details,
with the goal of explaining the core ideas clearly and concisely.

3.1 Construction of πNz

Before we go to the distributional setting, it is instructive to build intuitions from ODEs. In
particular, we return to (Hairer et al., 2006, Chapter IX, Example 1.1), where we consider solving
y′(t) = y(t)2 with the Euler update yk+1 = yk + ηy2

k for some η > 0. Following this example, we
hypothesize the existence of a modified ODE as the formal series

ỹ′(t) = ỹ(t)2 +
∞∑
`=1

c`(ỹ(t)) η` , (3.1)

such that ỹ(0) = yk and ỹ(η) = yk+1. If ỹ has a Taylor expansion satisfying the constraint
ỹ(η) = ỹ(0) + ηỹ(0)2, we can solve for all the coefficients c`(ỹ(t)) by matching the terms with the
same polynomial order of η`.

Observe that if this formal series converges, we have an exact reconstruction of the Euler
method {yk}k≥1 via a modified ODE. However, since this is often not easy (or even possible), we
alternatively consider a truncation of this series, leading to a high order approximation. This is
exactly the approach known as backward error analysis (Hairer et al., 2006). We plot this particular
example in Figure 2.
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Figure 2: (a): A plot of backward error analysis for the example ODE (3.1), where truncations
of ỹ(t) are taken to better approximate the Euler discretization. (b): A toy example to show how
the distribution πN

z constructed using weak backward error analysis compares against the true
stationary distribution of SGLD L(X∞). In this case, we choose the loss to be f(x, z) = 1

2x
2

so we can obtain explicit formulas for the densities. We observe a large discrepancy between
the Gibbs measure ρz and L(X∞) (for SGLD), where as the first order approximation π1

z is a
much better approximation to L(X∞). See Appendix B for details of the calculations.

Once again, we emphasize that extending this method directly through pathwise approximation
of the diffusion will be difficult (Shardlow, 2006). However, if we forego the pathwise information
of the Langevin diffusion {X(t)}t≥0 (1.3), and only consider its distribution via Eφ(X(t)) for some
test function φ, we can study the evolution via the Kolmogorov backward equation

∂tu(t, x) = Lz u(t, x) , u(0, x) = φ(x) , (3.2)

where Lz u := 〈−∇Fz,∇u〉+ 1
β∆u is the Itô generator, and u(t, x) = E[φ(X(t))|X0 = x] is the well

known stochastic representation (Pardoux and Răşcanu, 2014, Theorem 3.43).
Since the evolution of Langevin diffusion’s distribution can be interpreted as Wasserstein gra-

dient flow in the space of probability distributions (Jordan et al., 1998), it is natural to consider
extending backward error analysis in the space of distributions. Indeed, this is the approach taken
by Debussche and Faou (2011) using a modified PDE instead.

Similar to (3.1), we instead write down a modified Kolmogorov equation as a formal series

∂tv = Lzv +
∞∑
`=1

η` L`,z v , v(0, x) = φ(x) , (3.3)

where {L`,z}`≥1 are differential operators playing the same role as the coefficients c` in (3.1). These
operators are solved such that an Itô type Taylor expansion matches the distribution of SGLD in
the sense v(η, x) = E[φ(X1)|X0 = x] formally, where X1 is the one step update of (2.3) and φ is
the same test function as in (3.3).

Once again, this formal series is an exact reconstruction of SGLD’s evolution if the series is
convergent. Similar to the modified equation for ODEs, we avoid justifying the convergence by
taking a truncation at order N , matching the regularity condition of Assumption 2.1, which is
required for the Taylor type expansion in η. More precisely, we construct the truncation using
functions vm(t, x) defined recursively as the solutions of the following equations

∂tvm − Lzvm =

m∑
`=1

L`,zvm−` , vm(0, x) =

{
φ(x) , m = 0 ,

0 , m > 0 .
(3.4)
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Using this construction, we show that the truncation of v defined by v(N) =
∑N

`=0 η
`v` approximates

E[φ(X1)|X0 = x] up to an error of O(ηN+1) .
Next, we establish the convergence of the truncation terms vm via a standard spectral gap

argument for non-homogenous parabolic PDEs (Pardoux et al., 2003). More precisely, we can
write ∣∣∣vm(t, x)− lim

s→∞
vm(s, x)

∣∣∣ ≤ C e−λt/2 , (3.5)

where λ > 0 is the Poincaré constant arising as a consequence of Assumption 2.2 (Bakry et al., 2008;
Raginsky et al., 2017). By standard adjoint equation arguments (Pavliotis, 2014, Theorem 2.2),
we can recover the stationary measure from (3.4) by setting ∂tvm = 0 and replacing all differential
operators with their corresponding adjoint. More precisely, we have limt→∞ vm(t, x) = ρz(φµm,z),
where the Radon-Nikodym derivative µm,z(x) is the unique solution of the Poisson equation

Lzµm,z = −
m∑
`=1

L∗`,zµm−`,z , (3.6)

where we use L∗`,z to denote the adjoint operator of L`,z in L2(ρz), and µ0,z = 1. Observe the above
equation is exactly stationary adjoint of (3.4), where we note L∗z = Lz is self-adjoint.

Using linearity of expectation over ρz, we can write

lim
t→∞

v(N)(t, x) = ρz

(
φ

N∑
`=0

η` µ`,z

)
, (3.7)

hence we recover the approximate stationary measure as πNz = ρz
∑N

`=0 η
`µ`,z.

Finally, to extend the one step error bound of O(ηN+1) to arbitrary steps, we use a telescoping
argument to write

∣∣∣Ez φ(Xk)− v(N)(t, x)
∣∣∣ ≤ E

k∑
`=1

∣∣∣E[v(N)((`− 1)η,Xk−`+1)− v(N)(`η,Xk−`)|Fk−`]
∣∣∣

≤ C ηN+1
k∑
`=1

e−λ`η/2 ,

(3.8)

where {Fk}k≥0 is the filtration generated by the algorithm {Xk}k≥0. Here, we used the one step
error bound and exponential convergence (3.5). Note that we can bound the geometric series by

1
1−e−λη/2 = O(η−1), hence leading to the error order of O(ηN ) in Theorem 2.3. We plot an example

construction of π1
z, where we can compute the density explicitly in Figure 2.

3.2 Generalization Bound

We start by recalling the definition and generalization property of the uniform stability (Bousquet
and Elisseeff, 2002) for distributions.

Definition 3.1 (Uniform Stability). A collection of distributions {πz} on Rd indexed by z ∈ Zn
is said to be ε-uniformly stable if for all z, z ∈ Zn with only one differing coordinate

sup
z∈Z
|πz(f(·, z))− πz(f(·, z))| ≤ ε. (3.9)
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Proposition 3.2 (Generalization). Suppose the collection of distributions {πz} is ε-uniformly sta-
ble, and that for all (z, z) ∈ Zn+1, we also have f(·, z) ∈ L1(πz). Then the expected generalization
error of {πz} is bounded by ε, or more precisely

|E [πz(Fz)− πz(F )] | ≤ ε . (3.10)

Additional details can be found in Appendix A. With this approach in mind, we introduce
several additional notations. Without loss of generality, we let z = {z1, · · · , zi, · · · , zn} and z =
{z1, · · · , zi, · · · , zn} such that they only differ in the ith coordinate. We also define z(i) := z ∩ z
and extend previous notations

Fz(i) :=
1

n

n∑
j=1,j 6=i

f(x, zi) , ρz(i) :=
1

Z(i)
exp(−βFz(i)) , qzi :=

Z(i)

Z
exp

(
−β
n
f(x, zi)

)
, (3.11)

such that we can write Fz(i) + f(·, zi) = Fz, ρz(i)qzi = ρz, and vice versa for the zi and z terms. We

also define the norm ‖φ‖L2(ρ
z(i)

) :=
[
ρz(i)(φ

2)
]1/2

.

We start by putting the two integrals with respect to πNz , π
N
z under one integral with respect

to ρz(i) , and use triangle and Cauchy-Schwarz inequalities to get

|πz(f)− πz(f)| =

∣∣∣∣∣ρz(i)
(
f

N∑
`=0

η` (µ`,zqzi − µ`,zqzi)

)∣∣∣∣∣
≤

N∑
`=0

η` ‖f‖L2(ρ
z(i)

) ‖µ`,zqzi − µ`,zqzi‖L2(ρ
z(i)

) .

(3.12)

This implies that it is sufficient to bound the norm ‖µ`,zqzi −µ`,zqzi‖L2(ρ
z(i)

) to achieve uniform

stability (Lemma 6.2). At the same time, we recall from (3.6) that µm,z, µm,z solve very similar
Poisson equations

Lzµm,z = −
m∑
`=1

L∗`,z µm−`,z =: Gm,z ,

Lzµm,z = −
m∑
`=1

L∗`,z µm−`,z =: Gm,z ,

(3.13)

where we observe the left hand side operator only differs by (Lz−Lz)µ = 1
n〈∇f(x, zi)−∇f(x, zi),∇µ〉,

which is of order O( 1
n). Furthermore, the right hand side only depends on µ`,z, µ`,z for ` < m. This

suggests the following induction structure

µ`,zqzi − µ`,zqzi = O

(
1

n

)
for all 0 ≤ ` ≤ m− 1

=⇒ Gm,zqzi −Gm,zqzi = O

(
1

n

)
=⇒ µ`,zqzi − µ`,zqzi = O

(
1

n

)
for all 0 ≤ ` ≤ m,

(3.14)

where we observe the induction step incremented the set of ` ∈ {0, 1, · · · ,m− 1} to {0, 1, · · · ,m}.
To complete the proof of uniform stability, we need to make the above sketch precise. This

requires the control of norms for higher order derivatives of µ and G terms, which is detailed in
Lemma 6.7.
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4 Discussion

On the Poincaré Constant. Without a careful analysis, a non-convex potential f(·, z) generally
lead to a Poincaré constant with exponentially poor dependence on the inverse temperature β and
dimension d (Raginsky et al., 2017). However, there are many useful applications with universal
Poincaré constants (independent of β, d). Most famously, when F is strongly convex, we can use the
Bakry-Émery curvature condition to achieve an universal constant (Bakry et al., 2013). Cattiaux
and Guillin (2021) and references within have studied many perturbations of convex potential f
with applications to Bayesian inference. Menz and Schlichting (2014); Li and Erdogdu (2020) have
also extended universal Poincaré constant to non-convex f , where all critical points are either strict
saddle or the unique secondary order stationary point. In particular, this class now contains the
Burer–Monteiro relaxation of semidefinite programs (Burer and Monteiro, 2003; Boumal et al.,
2016).

On the Smoothness Conditions. In Assumption 2.1, we assumed f(·, z) ∈ C6N+2. Indeed,
without additional smoothness, there is a lower bound on the runtime complexity (Cao et al.,
2020), and therefore higher order analysis is not appropriate in this setting. In fact, higher order
discretizations in general require higher order smoothness (Hairer et al., 2006). Therefore, any
application that calls for a higher order discretization can be studied using the approximation
method of this work. Furthermore, we remark that one can always consider smoothing the Gibbs
distribution via convolution with a Gaussian (Chaudhari et al., 2019; Block et al., 2020), which
leads to an infinitely smooth potential.

On Further Extensions. While this article is focused on the analysis of generalization error,
the framework can be extended to other analyses of interest. In general, weak backward error
analysis saves the approximation error between the discrete time algorithm to the diffusion process.
Therefore, any property of the algorithm can be studied via the approximate stationary distribution
πNz . For example, the expected suboptimality of Langevin discretizations is often analyzed via the
Gibbs distribution (Raginsky et al., 2017; Erdogdu et al., 2018; Li and Erdogdu, 2020), which
implies an opportunity to analyze the suboptimality of πNz instead.

5 Weak Backward Error Analysis: Proof of Theorem 2.3

In this section, we will complete the proof for Theorem 2.3. Here, we adopt the notation C∞pol(Rd) :=

∩m ∪` Cm` (Rd) for all smooth functions with polynomial growth. We remark while all the results
in this sections are stated for C∞pol(Rd) functions, we only ever differentiate 6N + 2 times, therefore
it does not contradict Assumption 2.1.

We start by stating a few technical estimates required for the main result. The first result states
that the moments of all order of the continuous process (X(t))t≥0 are all uniformly bounded in
time. This result is a minor modification to Kopec (2013, Proposition 2.2). The proof is added in
Section 5.1 for completeness and simply consists on adding the dependence on β.

Proposition 5.1 (Moment Estimates on the Continuous Process). Let x0 ∈ Rd and (X(t))t≥0

satisfying (1.3). Under Assumption Assumption 2.2, for each p ≥ 1 and 0 < γ < 2m, there exists
a positive constant Cp such that

E
(
|X(t)|2p

)
≤ Cp

(
|x0|2p exp(−γt) + 1

)
, ∀t > 0 . (5.1)
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In particular, we have the recursive formula for Cp

Cp = max

((
2pb+

2p

β
(d+ 2p− 2)

)
Cp−1 + 1, 1

)
max

(
1

2pm− γ1
, 1

)
,

where we observe Cp is on the order of O((d/β)p).

Before the next result, we will state a technical lemma from Raginsky et al. (2017, Lemma 3.1).

Lemma 5.2 (Quadratic Bounds on f(·, z)). Under Assumption 2.1 and 2.2, for all x ∈ Rd and
z ∈ Z, we have

|∇f(x, z)| ≤M |x|+M1,

and
m

3
|x|2 − b

2
log 3 ≤ f(x, z) ≤ M

2
|x|2 +M1|x|+M0,

We will need the similar estimates for the solution of the discrete equation as the ones obtained
in (5.1). For this proof, we followed similar arguments from Raginsky et al. (2017, Lemma 3.2) and
(Kopec, 2013, Proposition 2.5).

Proposition 5.3 (Moment Estimates on the Discrete Process). Let x0 ∈ Rd and (Xk)k∈N be the
discrete Langevin algorithm satisfying (2.3). Under Assumption 2.1 and 2.2, if we set 0 < η < 2m

M2 ,
then for each p ≥ 1, there exists a positive constant Cp uniform in k, such that

E
(
|Xk|2p

)
≤ Cp

(
|x0|2p + 1

)
, ∀k > 0.

The proof can be found in Section 5.2.
The moments estimates, together with the Markov property, are used to extend the local analysis

to the global analysis. The next result corresponds to a small modification of Debussche and Faou
(2011, Theorem 3.2), where we need to apply a moment estimate using Proposition 5.3.

Before we state the result, we will define the semi-norm

|φ|l,k := sup
α∈Nd

0<|α|≤l

sup
x∈Rd

|∂αφ(x)|(1 + |x|k)−1.

This next result is key to developing the modified PDE (3.3), as we prove an asymptotic
expansion of the discrete time SGLD process (2.3).

Proposition 5.4 (Asymptotic Expansion for SGLD). Let φ ∈ C∞pol(Rd), then for all N ∈ N
there exists an integer l2N+2 such that φ ∈ C2N+2

l2N+2
(Rd). Let {Xk}k∈N be the discrete time SGLD

algorithm from (2.3). Then for every integer j ≥ 0, there exist differential operators Aj of order
2j with coefficients from C∞pol(Rd), such that for all integer N ≥ 1 there exist constants CN and
integer α depending on N and the polynomial growth rate of Fz(·) and its derivatives, such that for
all η < 2m

M2 we have∣∣∣∣∣∣Eφ(X1)−
N∑
j=0

ηjAjφ(x)

∣∣∣∣∣∣ ≤ CNηN+1(1 + |x|α)|φ|2N+2,l2N+2
, ∀x ∈ Rd,

where in particular we have A0 = I and A1 = L.
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The proof can be found in Section 5.3.
The rest of the results will follow directly from the steps of Kopec (2013), which is an extension

of Debussche and Faou (2011) from a torus to Rd. We will sketch the steps here, and check the
conditions that leads to the results of Kopec (2013).

Specifically, we will construct operators {Lj}j∈N such that the operator

L := L+ ηL1 + · · ·+ ηjLj + · · · ,

satisfies the following identity in a formal sense

exp(ηL) =

∞∑
`=0

η`

`!
(L+ ηL1 + η2 + L2 + · · · )` =

∞∑
j=0

ηjAj . (5.2)

Observe that it is sufficient to the coefficients to each term of the power series, i.e. ηj . Using a
formal series inverse approach from Hairer et al. (2006), we obtain the following formal equivalence

Lj = Aj+1 +

j∑
`=1

B`
`!

∑
n1+···+n`+1=n−`

Ln1 · · ·Ln`An`+1+1 , (5.3)

where {B`} are the Bernoulli numbers.
Using this construction, we can define the following modified PDE as before in (3.3)

∂v

∂t
= (Lz + ηL1,z + η2L2,z + · · · )v, v(0, x) = φ(x), (5.4)

such that we can write the formal solution as

v(η, x) = eηLφ(x).

Using the formal equivalence for the operators in Equation (5.2), we can obtain the formal
equivalence of the solutions as well, i.e.

v(η, x) = eηLφ(x) =

∞∑
j=0

ηjAjφ(x) = Ez[φ(X1)|X0 = x].

Finally, we can study the stationary distribution πz = µzρz by writing down the adjoint equation
that µz must satisfy

L∗µz = 0,

where L∗ is the adjoint operator with respect to ρz.
While the above construction is formal, Debussche and Faou (2011); Kopec (2013) made these

statements precise for truncated series by proving error bounds with the desired order in η. In
particular, the same authors constructed the truncation by the following decomposition of πNz

πNz = ρzµ
N
z := ρz(1 + ηµ1 + · · ·+ ηNµN ), (5.5)

and if each µk satisfies the Poisson equation

Lµk = −
k∑
`=1

L∗`µk−` , (5.6)

then we can show that
(L∗ + ηL∗1 + · · ·+ ηNL∗N )µN = O(ηN+1),

which is sufficient close to the desired truncation to preserve the order of approximation error.
To summarize, we will restate and prove the main result of Theorem 2.3.
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Theorem 5.5 (Approximation of SGLD). Suppose f(x, z) satisfies Assumption 2.1 and 2.2 with
order of approximation N ∈ N. Then there exist positive constants C, λ, `′ (depending on N), such
for all step size 0 < η ≤ 2m

M2 and z ∈ Zn, we can construct a modified stationary measure πNz , with

the property that for all steps k ≥ 0, initial condition X0 = x, and test function φ ∈ C6N+2
` (Rd),

the following approximation bound on the SGLD algorithm {Xk}k≥0 (2.3) holds∣∣Ez φ(Xk)− πNz (φ)
∣∣ ≤ C (e−λkη/2 + ηN

)
(1 + |x|)`′ ‖φ− ρz(φ)‖6N+2,` . (5.7)

In particular, the above result holds for φ ∈ {F, Fz}.

Proof. It is sufficient to check that we have all the technical conditions to use the main result of
Kopec (2013, Proposition 5.4).

We start by checking that the modified flow result of Kopec (2013, Theorem 4.1) only requires
the asymptotic expansion result of Proposition 5.4. In particular, the only difference between our
results are the construction of the operators {Aj}. Since all the definitions of {Lj} are in terms of
{Aj}, the result follows by the exact same proof.

Next we observe that Kopec (2013, Proposition 5.1 and 5.3) does hinge on any earlier technical
estimates.

And finally the construction of the invariant measure in Kopec (2013, Proposition 5.4) relies on
the above intermediate results, and additionally requires bounding the discrete moments E|Xk|2p
given by Proposition 5.3. Specifically, our discrete moment estimate replaces Kopec (2013, Propo-
sition 2.5). Therefore, the result follows from the same proof.

5.1 Proof of Proposition 5.1

Proof. Let N ∈ N be a positive integer, and we define the stopping time

τN := inf{t ≥ 0 : |X(t)| ≥ N}.

We will prove by induction both the main statement (5.1) and the following: for all p ∈ N
positive, 0 < γ < 2m, there exists a constant Cp > 0 such for all t ≥ 0 we have

E
∫ t∧τN

0
|X(s)|2p exp(γs)ds ≤ Cp

(
|x0|2p + 1 + E exp(γ(t ∧ τN ))

)
. (5.8)

To prove the case for p = 1, we start by making the following computation

L|x|2 = −2〈x,∇Fz(x)〉+
2d

β
≤ −2m|x|2 + 2b+

2d

β
, (5.9)

where we used Assumption 2.2.
Next we let 0 < γ1 < 2m, and apply Itô’s Lemma to

|X(t ∧ τN )|2 exp(γ1(t ∧ τN )) we obtain ∀t ≥ 0

|X(t ∧ τN )|2 exp(γ1(t ∧ τN )) = |X(0)|2 + γ1

∫ t∧τN

0
|X(s)|2 exp(γ1s)ds

+

∫ t∧τN

0
L(|X(s)|2) exp(γ1s)ds

+

∫ t∧τN

0
2X(s) exp(γ1s)dW (s).
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Using the fact that stopping at τN bounds all terms of the integrals, we have that the final
stochastic integral is a martingale. Next we take the expectation and use the above computation
to get ∀t ≥ 0

E|X(t ∧ τN )|2 exp(γ1(t ∧ τN )) ≤ |x0|2 + (γ1 − 2m)E
∫ t∧τN

0
|X(s)|2 exp(γ1s)ds

+

(
2b+

2d

β

)
E
∫ t∧τN

0
exp(γ1s)ds.

(5.10)

Since γ1 < 2m, we can drop the first integral term. Next we use Fatou’s Lemma on the left
hand side, and Monotone Convergence Theorem on the right hand side to get ∀t ≥ 0

E|X(t)|2 exp(γ1t) ≤ |x0|2 +
2b+ 2d

β

γ1
exp(γ1t),

which proves (5.1) for p = 1.
To prove (5.8) for p = 1, we return to (5.10) and move the term (γ1− 2m) to the left hand side

and use the estimate above to get

(2m− γ1)E
∫ t∧τN

0
|X(s)|2 exp(γ1s)ds ≤ |x0|2 +

2b+ 2d
β

γ1
E exp(γ1(t ∧ τN )).

This implies we have the constant

C1 = max

(
2b+ 2d

β

γ1
, 1

)
·max

(
1

2m− γ1
, 1

)
.

Now we prove the induction step for p, assuming the results (5.1) and (5.8) holds for p − 1.
Similarly we make the following computations

∇|x|2p = 2p|x|2p−2x,

(∇ · ∇)|x|2p = 2p|x|2p−2d+ 2p(2p− 2)|x|2p−4〈x, x〉,

L|x|2p = −2p|x|2p−2〈x,∇Fz(x)〉+
2p

β
(d+ 2p− 2)|x|2p−2

≤ −2pm|x|2p + 2pb|x|2p−2 +
2p

β
(d+ 2p− 2)|x|2p−2,

where we used Assumption 2.2 in the last inequality.
Then we can apply Itô’s Lemma to |X(t ∧ τN )|2p exp(γ1(t ∧ τN )) for some 0 < γ1 < 2m to get

that ∀t ≥ 0

E|X(t ∧ τN )|2p exp(γ1(t ∧ τN ))

= |x0|2p + γ1E
∫ t∧τN

0
exp(γ1s)|X(s)|2pds+ E

∫ t∧τN

0
L(|X(s)|2p) exp(γ1s)ds

≤ |x0|2p + (γ1 − 2pm)E
∫ t∧τN

0
exp(γ1s)|X(s)|2pds

+

(
2pb+

2p

β
(d+ 2p− 2)

)
E
∫ t∧τN

0
|X(s)|2p−2 exp(γ1s)ds,

(5.11)

where we used the above computation to in the last step.
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Using the fact that γ < 2m ≤ 2pm, and (5.8) for p− 1, we get that

E|X(t ∧ τN )|2p exp(γ1(t ∧ τN ))

≤ |x0|2p +

(
2pb+

2p

β
(d+ 2p− 2)

)
Cp−1

(
|x0|2p−2 + 1 + E exp(γ1(t ∧ τN ))

)
.

Once again using Fatou’s Lemma and Monotone Convergence Theorem, we have proved (5.1)
for p, with constant

C̃p = max

((
2pb+

2p

β
(d+ 2p− 2)

)
Cp−1 + 1, 1

)
.

To prove (5.8), we return to an earlier step at (5.11) and using the above estimate to get

(2pm− γ1)E
∫ t∧τN

0
|X(s)|2p exp(γ1s)ds

≤ C̃p
(
|x0|2p + 1 + E exp(γ1(t ∧ τN ))

)
.

This completes the induction proof with the constant

Cp = C̃p max

(
1

2pm− γ1
, 1

)
= max

((
2pb+

2p

β
(d+ 2p− 2)

)
Cp−1 + 1, 1

)
max

(
1

2pm− γ1
, 1

)
.

5.2 Proof of Proposition 5.3

Proof. We start by showing a basic inequality: for every l ∈ N∗, ε > 0, there exist a constant
Cl,ε > 0, such that for all x ∈ Rd we have

|x|2(l−1) ≤ ε|x|2l + Cl,ε. (5.12)

The result follows from the fact that |x|2(l−1) = ε|x|2l when |x| = ε−1, and therefore it is
sufficient to choose Cl,ε = ε−2(l−1) to satisfy (5.12).

Next we consider expanding E|Xk+1|2p directly

E|Xk+1|2p

= E
∣∣∣∣Xk − η∇Fζk(Xk)−

√
2η

β
ξk

∣∣∣∣2p
= E

(
|Xk − η∇Fζk(Xk)|2 +

2η

β
|ξk|2 − 2

〈
Xk − η∇Fζk(Xk),

√
2η

β
ξk

〉)p
= E

∑
i+j+l=p

p!

i!j!l!
|Xk − η∇Fζk(Xk)|2i

(
2η

β
|ξk|2

)j
(−2)l

〈
Xk − η∇Fζk(Xk),

√
2η

β
ξk

〉l
.
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Here we observe that whenever l is odd, the term has zero mean due to an odd power of ξk.
Therefore using the Cauchy-Schwarz inequality we get

E|Xk+1|2p ≤ E
∑

i+j+2l=p

p!

i!j!(2l)!
|Xk − η∇Fζk(Xk)|2(i+l)

(
2η

β
|ξk|2

)j+l
22l

= E|Xk − η∇Fζk(Xk)|2p

+
∑

i+j+2l=p
i>0

p!

i!j!(2l)!
|Xk − η∇Fζk(Xk)|2(i+l)

(
2η

β
|ξk|2

)j+l
22l

(5.13)

Then we observe after replacing the index l with 2l, whenever i 6= p, we have that i+ l < p, so
we can isolate the only term with |Xk − η∇Fζk(Xk)|2p. At the same time, since |ξk|2 ∼ χd, all the
moments are bounded. This implies we have for all i+ j + 2l = p, i > 0 we have

EXk
p!

i!j!(2l)!
|Xk − η∇Fζk(Xk)|2(i+l)

(
2η

β
|ξk|2

)j+l
22l

= C|Xk − η∇Fζk(Xk)|2(i+l)

≤ Cε|Xk − η∇Fζk(Xk)|2p + C2(i+l),ε,

where EXk denotes the expectation conditioned on Xk, and ε > 0 can be chosen arbitrarily small
using (5.12).

It is then sufficient to control the terms of the form |Xk − η∇Fζk(Xk)|2p

|Xk − η∇Fζk(Xk)|2p = 〈Xk − η∇Fζk(Xk), Xk − η∇Fζk(Xk)〉p

=
(
|Xk|2 + η2|∇Fζk(Xk)|2 − 2η〈Xk,∇Fζk(Xk)〉

)p
≤
(
|Xk|2 + η2 (M |Xk|+M1)2 − 2ηm|Xk|2 + 2ηb

)p
=
(
(1− 2ηm+ η2M2)|Xk|2 + 2η2MM1|Xk|+ η2M2

1 + 2ηb
)p

where for the inequality we used Lemma 5.2 and Assumption 2.2 on Fζk(x). We remark that this
is possible since Fζk(x) = 1

nb

∑
z∈ζk f(x, z), and clearly an empirical average satisfies the same

properties.
At this point we can use the condition 0 < η < 2m

M2 , which implies we can get r := (1− 2ηm+
η2M2) < 1. Now we separate into two cases, first when 0 < r < 1 we have

|Xk − η∇Fζk(Xk)|2p ≤ rp|Xk|2p + Cε|Xk|2p + C ≤ R|Xk|2p + C,

where we used (5.12) with ε sufficiently small such that 0 < R < 1.
In the second case when we have r ≤ 0, observe

0 ≤ |Xk − η∇Fζk(Xk)|2 ≤ r|Xk|2 + C|Xk|+ C ≤ C|Xk|+ C.

From here we can use (5.12) again to control the coefficients such that for some 0 < R < 1 we have
the same desired result

|Xk − η∇Fζk(Xk)|2p ≤ R|Xk|2p + C.

To complete the proof we return to (5.13), and rewrite the terms as

E|Xk+1|2p ≤ RE|Xk|2p+ C +
∑

i+j+2l=p
i>0

εCijl E|Xk|2p + Cijl,ε

≤ R̃E|Xk|2p + C̃,
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where we choose ε sufficiently small such that 0 < R̃ < 1. Then we can simply expand the Xk

terms recursively to get

E|Xk+1|2p ≤ R̃k+1|x0|2p +

k+1∑
l=0

R̃lC̃ ≤ |x0|2p +
C̃

1− R̃
,

where choosing Cp = max
(

C̃
1−R̃ , 1

)
leads to desired result from the statement.

5.3 Proof of Proposition 5.4

The proof to construct an asymptotic expansion of Eφ (Xk) follows along the lines of Debussche
and Faou (2011), for any φ ∈ C∞pol(Rd). Before we start the proof, we define a continuous time

process X̃(t) corresponding to the discrete SGLD algorithm {Xk} as the following

X̃(t) := Xk − (t− kη)∇Fζk(Xk) +

√
2

β
(W (t)−W (kη)) , ∀t ∈ [kη, (k + 1)η]. (5.14)

This leads to the following SDE representation

dX̃(t) = −∇Fζk(Xk)dt+

√
2

β
dW (t), ∀t ∈ [kη, (k + 1)η],

where most importantly when 0 ≤ t ≤ η we have the infinitesimal generator L̃ only depending on
the initial condition X0 = x

L̃(x, ζ0)φ(X̃(t)) :=

d∑
i=1

−∂iFζ0(x)∂iφ(X̃(t)) +

d∑
i=1

1

β
∂iiφ(X̃(t)),

and furthermore we also have EL̃(x, ζ0) = L(x), since the subsample gradient ∇Fζ0 is an unbiased
estimate of the true gradient ∇Fz(x).

Proof. To start the proof we apply Itô’s Lemma on φ(X̃(t)) for 0 ≤ t ≤ η to get

φ(X̃(t)) = φ(x) +

∫ t

0
L̃(x, ζ0)φ(X̃(s))ds+

d∑
i=1

∫ t

0

√
2

β
∂iφ(X̃(s))dW i(s). (5.15)

Here we define the operator

R0,i(x) :=

√
2

β
∂i,

and continue to expand by applying (5.15) on ∂iφ(X̃(t)) and ∂iiφ(X̃(t)) to get
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L̃(x, ζ0)φ(X̃(s1))

=L̃(x, ζ0)φ(x)

+

∫ s1

0

d∑
i1,i2=1

∂i1Fζ0(x)∂i2Fζ0(x)∂i1i2φ(X̃(s2))− ∂i1Fζ0(x)
1

β
∂i1i2i2φ(X̃(s2))ds2

+

∫ s1

0

d∑
i1,i2=1

− 1

β
∂i2Fζ0(x)∂i1i1i2φ(X̃(s2)) +

1

β2
∂i1i1i2i2φ(X̃(s2))ds2

+
d∑

i1,i2=1

∫ s1

0
−∂i1Fζ0(x)

√
2

β
∂i1i2φ(X̃(s2)) +

1

β

√
2

β
∂i1i1i2φ(X̃(s2))dW i2(s2).

Here we can define

Ã1(x, ζ0) := L̃(x, ζ0),

Ã2(x, ζ0) :=
d∑

i1,i2=1

∂i1Fζ0(x)∂i2Fζ0(x)∂i1i2 − ∂i1Fζ0(x)
1

β
∂i1i2i2

+
d∑

i1,i2=1

− 1

β
∂i2Fζ0(x)∂i1i1i2 +

1

β2
∂i1i1i2i2 ,

R̃1,i2(x, ζ0) :=
d∑

i1=1

−∂i1Fζ0(x)

√
2

β
∂i1i2 +

1

β

√
2

β
∂i1i1i2 ,

which would lead to

φ(X̃(t)) = φ(x) + tÃ1(x, ζ0)φ(x) +

∫ t

0

∫ s1

0
Ã2(x, ζ0)φ(X̃(s2))ds2

+
d∑

i2=1

∫ t

0

∫ s1

0
R̃1,i2(x, ζ0)φ(X̃(s2))dW i2(s2)ds1

+

d∑
i1=1

∫ t

0
R0,i1φ(X̃(s1))dW i1(s1).

At this point we observe that the last two integrals are local martingales, therefore a localization
argument can remove them in expectation. To be precise, we will define the stopping time τc :=
inf{t ≥ 0 : |X̃(t)| ≥ c} for some c > 0. Therefore we have that

Eφ(X̃(t ∧ τc)) = φ(x) + (t ∧ τc)A1(x)φ(x) + E
∫ t∧τc

0

∫ s1

0
A2(x)φ(X̃(s2))ds2,

where Ai(x) = EÃi(x, ζ0) is the expectation over the subsampling randomness ζ0.
Here we observe that A2(x) is a 4th order differential operator, with C∞2 (Rd) coefficients, since

we have |∂iFζ0(x)| ≤ C(1 + |x|) from Lemma 5.2. Therefore with N = 1 we have

|A2(x)φ(X̃(s2))| ≤ C(1 + |x|2)(1 + |X̃(s2)|l2N+2)|φ|2N+2,l2N+2
,
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for some l2N+2 satisfying the Proposition statement.
Now applying the moment estimate from Proposition 5.3 with η = s2 we have that∣∣∣Eφ(X̃(t ∧ τc))− φ(x)− (t ∧ τc)A1(x)φ(x)

∣∣∣
≤ C(t ∧ τc)2(1 + |x|2)(1 + E|X̃(s2)|l2N+2)|φ|2N+2,l2N+2

≤ CNηN+1(1 + |x|α)|φ|2N+2,l2N+2
,

where α = l2N+2 + 2, and we take N = 1 here. And since we can take t = η and c > 0 is arbitrary,
we have proven the Proposition statement for N = 1.

For the general statement, we will prove inductively the following statement for all N

φ(X̃(t)) =φ(x) + tL̃(x, ζ0)φ(x) +
N∑
j=2

tjÃj(x, ζ0)φ(x)

+

∫ t

0
· · ·
∫ sN

0
ÃN+1(x, ζ0)φ(X̃(sN+1))dsN+1 · · · ds1

+
N∑
j=0

d∑
i=1

∫ t

0
· · ·
∫ sj

0
R̃j,i(x, ζ0)φ(X̃(sj+1))dW i(sj+1)dsj · · · ds1.

(5.16)

Assume the above statement is true for N , with ÃN+1(x, ζ0) and R̃N,i(x, ζ0) are known, and we
will proceed to prove the case for N + 1.

Here we start by decomposing ÃN+1(x, ζ0) into

ÃN+1(x, ζ0) =
∑
k

Ãk
N+1(x, ζ0)∂k,

where k ∈ Nd are multi-indices, and each Ãk
N+1(·, ζ0) ∈ C∞pol(Rd) since they are products of ∂iFζ0(x)

and 1
β .

Then we similarly apply (5.15) to each of the terms ∂kφ(X̃(sN+1)) to get∑
k

Ãk
N+1(x, ζ0)∂kφ(X̃(sN+1))

=
∑
k

Ãk
N+1(x, ζ0)∂kφ(x)

+
∑
k

∫ sN+1

0

d∑
i=1

Ãk
N+1(x, ζ0)(−∂iFζ0(x))∂i∂kφ(X̃(sN+2))dsN+2

+
∑
k

∫ sN+1

0

d∑
i=1

Ãk
N+1(x, ζ0)

1

β
∂ii∂kφ(X̃(sN+2))dsN+2

+
∑
k

d∑
i=1

∫ sN+1

0
Ãk
N+1(x, ζ0)

√
2

β
∂i∂kφ(X̃(sN+2))dW i(sN+2).

This implies the following definitions

ÃN+2(x, ζ0) :=
∑
k

d∑
i=1

Ãk
N+1(x, ζ0)(−∂iFζ0(x))∂i∂k + Ãk

N+1(x, ζ0)
1

β
∂ii∂k,

R̃N+1,i(x, ζ0) :=
∑
k

d∑
i=1

Ãk
N+1(x, ζ0)

√
2

β
∂i∂k,
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which implies all coefficients of ÃN (·, ζ0) are in C∞N (Rd), hence we obtained the result from (5.16)
with N + 1.

Using the same localization argument for N = 1, we can obtain the desired result.

6 Uniform Stability: Proof of Theorem 2.4

6.1 Proof Overview

To help make the lengthy proof more readable, we start with a high level section outlining the key
technical Lemmas containing the most important high level ideas.

6.1.1 Notations and Steps of the Proof

Without loss of generality, let i be the differing coordinate between two data points z and z, i.e.
z = (z1, . . . , zi, . . . , zn) and z = (z1, . . . , zi, . . . , zn). We will add the subscript z or z to make the
dependence on the data explicit, for example Lz, µk,z, Gk,z, π

N
z etc. We also define z(i) := z ∩ z as

the common set of data, and let

Fz(i) :=
1

n

n∑
j=1,j 6=i

f(x, zj).

Thus Fz = Fz(i) + 1
nf(x, zi) and we define a new Gibbs probability measure ρz(i) as

ρz(i) :=
1

Z(i)
exp(−βFz(i)),

where Z(i) =
∫
Rd exp(−βFz(i))dx is the normalizing constant. Finally, we define Radon-Nikodym

derivatives of ρz and ρz with respect to ρz(i)

qzi :=
dρz
dρz(i)

=
Z(i)

Z
exp

(
−β
n
f(x, zi)

)
, qzi :=

dρz
dρz(i)

=
Z(i)

Z
exp

(
−β
n
f(x, zi)

)
,

where Z is the normalizing constant for ρz, so that we can write ρz = ρz(i)qzi and ρz = ρz(i)qzi .

In this section, we prove a uniform stability bound for the modified invariant measure πNz . This
will imply a generalization bound on T2 using Proposition 3.2. The result is given below.

Theorem 6.1 (Generalization Bound of πNz ). Suppose {Xk}k≥0 is any discretization of Langevin
diffusion (1.3) with an approximate stationary distribution πNz of the type in Theorem 2.3. Then
there exists a constant C > 0 (depending on N), such that for all choices of k, n and η ∈ (0, 1) the
following expected generalization bound holds∣∣E [πNz (F )− πNz (Fz)

] ∣∣ ≤ C

n(1− η)
, (6.1)

where the expectation is with respect to z ∼ Dn.
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From Section 5, we recall the invariant measure πNz is constructed inductively using the terms
µk,z (5.5), and each terms µk,z in the asymptotic expansion satisfies a Poisson equation in Rd for
the elliptic operators Lz, i.e. for all k ≥ 0 we have

Lzµk,z = Gk,z, (6.2)

Lzµk,z = Gk,z. (6.3)

The main idea of the proof relies on comparing the different of solutions for the pairs of Poisson
equations in Rd. We will breakdown the proof of this result into several steps:

1. Sufficient condition for uniform stability and spectral gap: We derive a sufficient condition
for uniform stability, reducing the problem down to studying the pairs of Poisson equations
separately. Using the common Gibbs measure ρz(i) , we provide bounds on the desired norms
using a spectral gap on this measure. Standard results guarantee the existence of a spectral
gap of size λ′ > 0 for the measure ρz(i) and equivalently a Poincaré inequality with constant
λ′. This result will be used to derive the following energy estimates.

2. Zeroth-order energy estimates: We give a further sufficient condition for uniform stability on
the non-homogeneous terms Gk,z and Gk,z. The bounds are obtained using standard energy
estimate techniques for the Poisson equations (Evans, 2010, Section 6.2.2) and the Poincaré
inequality.

3. Higher order energy estimates: We complete the proof by proving that the sufficient condition
from the previous part holds, as Gk,z is defined recursively from µl,z with l < k. This requires
us to obtain higher order energy estimates using similar techniques.

6.1.2 Sufficient Condition for Uniform Stability and Spectral Gap

We provide a sufficient condition for uniform stability, which allows us to reduce the problem to
finding a bound on the difference µk,zqzi − µk,zqzi .

Lemma 6.2 (Sufficient to Bound L2 norms). A sufficient condition for uniform stability of πNz is
if for each k = 1, . . . , N , there exist a constant Cµk > 0, independent of data and n, such that

‖µk,zqzi − µk,zqzi‖L2(ρ
z(i)

) :=

[∫
Rd

(µk,zqzi − µk,zqzi)2dρz(i)

]1/2

≤ Cµk
n
. (6.4)

The proof can be found in Section 6.4.
An important tool is the following Poincaré inequality for the space C1(Rd)∩L2(ρz(i)). We will

use this Lemma to derive energy estimates and obtain uniform stability bound of order O(1/n).

Lemma 6.3 (Poincaré Inequality for ρz(i)). There exists a uniform spectral gap constant λ′ > 0 so
that, for every z(i) ∈ Zn−1 and every function u ∈ C1(Rd) ∩ L2(ρz(i)),∫

Rd
udρz(i) = 0 =⇒

∫
Rd
|u|2 dρz(i) ≤

1

λ′

∫
Rd
|∇u|2 dρz(i) .

Proof. The proof follows the same argument as in Raginsky et al. (2017, Appendix B), using
Lyapunov functional techniques developed by Bakry et al. (2008). Assumption 2.1 and 2.2 are
sufficient to guarantee that λ′ > 0 for ρz(i) .
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6.1.3 Zeroth-Order Energy Estimates

Based on Lemma 6.2, we must prove an inequality of the form (6.6). Our approach is based on
energy estimates for the solutions to the Poisson equations (6.2) and (6.3). The following Lemma
simply states that if the difference Gk,zqzi −Gk,zqzi is of order O(1/n), then inequality (6.6) holds,
and the measure πNz is uniformly stable.

Lemma 6.4 (Zeroth-Order Energy Estimates). For all k ≥ 0, assume there exists a non-negative
constant CGk such that

‖Gk,zqzi −Gk,zqzi‖L2(ρ
z(i)

) ≤
CGk
n
.

Then there exists another non-negative constant Cµk such that

‖µk,zqzi − µk,zqzi‖L2(ρ
z(i)

) ≤
Cµk
n
.

The proof is can be found in Section 6.5.

6.1.4 Higher Order Energy Estimates

To complete the proof of Theorem 2.4, we need to show that the sufficient condition in Lemma 6.2
holds. This implies we need to control the L2 (ρz(i)) norm of the difference Gk,zqzi −Gk,zqzi for all

k ≥ 0. Let us recall that by definition Gk,z := −
∑k

`=1 L
∗
`,zµk−`,z, which lets us write

Gk,zqzi −Gk,zqzi = −
k∑
`=1

L∗`,zµk−`,zqzi − L∗`,zµk−`,zqzi

= −
k∑
`=1

(L∗`,zµk−`,zqzi − L∗`,zµk−`,zqzi) + (L∗`,z − L∗`,z)µk−`,zqzi

=: −
k∑
`=1

T1,` + T2,` .

(6.5)

Note that in the above expressions all operators L∗`,z only act on the smooth functions µ and not
on q.

To control T2,`, notice that all operators L∗`,z can be written in non-divergence form with

C∞pol(Rd) coefficients.

Lemma 6.5 (C∞pol(Rd) Coefficients). For all ` ≥ 0 and α ∈ Nd, the operator L∗`,z has C∞pol(Rd)
coefficients. I.e. there exist functions φ`,α ∈ C∞pol(Rd) such that we can write

L∗`,z =
∑

0≤|α|≤2`+2

φ`,α(x)∂α .

The proof can bound found in Section 6.9.
It is easy to see that a control on the terms T2,` directly follows from the following Lemma.

Lemma 6.6. For all ` > 0, there exists a differential operator L̂` := L̂`(x) of order 2` + 2 with
C∞pol(Rd) coefficients, and independent of n, such that we can write

1

n
L̂∗` = L∗`,z − L∗`,z .
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Furthermore, for all ` ≥ 0, φ ∈ C∞pol(Rd), and α ∈ Nd, there exist non-negative constants C`,φ∂α,

depending on the L2 (ρz(i))-norm of µk−`,z and its derivatives up to order 2`+ 2 + |α|, such that

∥∥φ∂α((L∗`,z − L∗`,z)µk−`,z)qzi
∥∥
L2(ρ

z(i)
)
≤
C`,φ∂α
n

.

The proof is done by induction on the recursive construction of the operators Aj and Lj . All
operators are linear in the potential function Fz and Fz. The full proof is in Section 6.10

It remains to control the terms T1,`. From the expression of L∗`,z, it is clear that zeroth-order
estimates given in Lemma 6.4 are not sufficient to conclude the proof. we need to obtain estimates
on higher order derivatives with non-constant coefficients.

Lemma 6.7 (Higher Order Energy Estimates). Fix k ∈ N. If for all φ ∈ C∞pol(Rd), ` < k, and

multi-index α ∈ Nd, there exists a constant Cφ∂αG` > 0, such that we have

‖φ(∂αG`,z)qzi − φ(∂αG`,z)qzi‖L2(ρ
z(i)

) ≤
Cφ∂αG`
n

,

then for all J ∈ N, and degree-J differential operator L with coefficients in C∞pol(Rd) (i.e.

L :=
∑

0≤|α|≤J φ
α(x)∂α, where φα(x) ∈ C∞pol(Rd) for each |α| ≤ J), there exist a constant CLµk > 0

such that

‖Lµk,zqzi − Lµk,zqzi‖L2(ρ
z(i)

) ≤
CLµk
n

.

In particular, the above inequality holds for L = φ′∂α′L
∗
`,z with φ′ ∈ C∞pol(Rd), α′ ∈ Nd, and

J = 2`+ 2 + |α′|, therefore there exists a constant Cφ′∂α′Gk > 0 such that

‖φ′(∂α′Gk,z)qzi − φ′(∂α′Gk,z)qzi‖L2(ρ
z(i)

) ≤
Cφ′∂α′Gk

n
,

hence proving the induction step from k − 1 to k.

The proof can be found in Section 6.8.
Using the above result, we can finally provide a proof for uniform stability.

Proof. (of Theorem 2.4)
We first apply Lemma 6.2 so that it is sufficient to show that for each k ∈ N, there exists a

positive constant Cµk independent of n and data such that

‖µk,zqzi − µk,zqzi‖L2(ρ
z(i)

) ≤
Cµk
n

.

Then using Lemma 6.4, it is sufficient to show that for all k ∈ N, φ ∈ C∞pol(Rd), α ∈ Nd, there
exists a positive constant Cφ∂αGk such that

‖φ∂αGk,zqzi − φ∂αGk,zqzi‖L2(ρ
z(i)

) ≤
Cφ∂αGk
n

.

Finally we will prove the above condition using induction on k. Recalling the definition of
Gk,z = 0 when k = 0, then the k = 0 case follows trivially. Now assuming the cases 0, 1, · · · , k − 1
are true, we follow the decomposition in (6.5), and apply Lemmas 6.5 to 6.7 on the terms φ∂αT1,`

and φ∂αT2,`, for arbitrary φ ∈ C∞pol(Rd) and α ∈ Nd. This proves the desired control for the
difference φ∂αGk,zqzi − φ∂αGk,zqzi , hence showing the induction step for k.
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6.2 Poisson Equation Results

Before we start the proofs, we will state a result of existence, uniqueness, and polynomial growth
estimate for solutions of Poisson equations adapted from Pardoux and Veretennikov (2001, Theorem
1) and Pardoux et al. (2003, Proposition 1) to fit our assumptions.

Proposition 6.8. Under Assumption 2.1 and 2.2, for Poisson equations of the form

Lzu = G,

where
∫
Rd Gdρz = 0, there exist a unique function u that solves this equation. Furthermore, if we

have for some constants C > 0, k > 0 such that

|G(x)| ≤ C(1 + |x|k),

then for all k′ > k + 2, there exists a constant C ′ > 0 such that

|u(x)|+ |∇u(x)| ≤ C ′(1 + |x|k′).

We note here that Pardoux and Veretennikov (2001); Pardoux et al. (2003) proved the above
result under much more general conditions, and it is straight forward to verify that our assumptions
fall under a special case of the original result.

To get higher regularity, we will first state standard a higher regularity result from for bounded
domains.

Theorem 6.9. (Evans, 2010, Section 6.3.1, Theorem 3, Infinite Differentiability in the Interior)
Let U ⊂ Rd be a bounded open domain with boundary ∂U ∈ C1, L be a uniformly elliptic operator
with smooth (C∞(U)) coefficients, f ∈ C∞(U), and u is a weak solution of the equation

Lu = f .

Then we have u ∈ C∞(U).

We will adapt this classical result to our problem.

Proposition 6.10. Suppose Assumption 2.1 and 2.2 for Poisson equations of the form

Lzu = G ,

where
∫
Rd Gdρz = 0. If additionally Fz, G ∈ C∞pol(Rd), then we have u ∈ C∞pol(Rd).

Proof. Since we already have existence and uniqueness of solutions for the Poisson equation from
Proposition 6.8, we can restrict the solution u to any open bounded domain U with smooth bound-
ary. Then using Theorem 6.9, on any cover of Rd using open bounded domains with smooth
boundary {Ui}i∈I , we obtain that u ∈ C∞(Rd).

To show polynomial growth, we will consider an induction on k = |α|, where α ∈ Nd is a multi-
index. We start by observing that the k = 0 case follows trivially from Proposition 6.8. Assuming
the case is true for 0, 1, . . . , k − 1, we will prove the case for |α| = k. We start by computing

∂α(Lzu) = Lz∂αu+
J∑
l=1

∑
α1+α2=α
|α1|=l

(∂α1Lz)(∂α2u) = ∂αG .

24



This implies v = ∂αu solves the Poisson equation

Lzv = G̃ := ∂αG−
J∑
l=1

∑
α1+α2=α
|α1|=l

(∂α1Lz)(∂α2u) ,

where we define for any φ ∈ C1(Rd)

(∂α1Lz)φ := −〈∇∂α1Fz,∇φ〉.

Since all the |α2| < k, then by the induction hypothesis, we have that there exist constants
C, k > 0, such that for all α1 + α2 = α, |α2| < k, we have

|(∂α1Lz)(∂α2u)| ≤ C(1 + |x|k) .

Therefore G̃ must also only have polynomial growth. Finally, applying Proposition 6.8 on
v = ∂αu, we obtain that there exist constants C ′, k′ > 0 such that

|∂αu| ≤ C ′(1 + |x|k′) ,

which is the desired result.

6.3 Moment Bounds for ρz, ρz(i)

Lemma 6.11. For all k ∈ N, we have that∫
Rd
|x|kdρz <∞ .

Additionally, by absorbing any factors of the type n−1
n or n+1

n into β, we have for all φ ∈
C∞pol(Rd),

‖φ‖L2(ρ
z(i)

) + ‖φqzi‖L2(ρ
z(i)

) + ‖φ∇f(x, zi)qzi‖L2(ρ
z(i)

) <∞ .

Proof. These bounds follows directly from Proposition 5.1, since we can write for even k∫
Rd
|x|kdρz = lim

t→∞
E|X(t)|k ≤ Ck/2 .

For an odd k, we use Young’s inequality to write

|x|k ≤ C|x|k+1,

for some constant C.
Since φ < Cφ(1 + |x|kφ), we have ‖φ‖L2(ρ

z(i)
) <∞ follows immediately.

At the same time, we can write

q2
ziρz(i) =

1

Z ′
exp

(
−β
(
Fz +

1

n
f(x, zi)

))
= ρ̂ .

Therefore we can obtain a new bound as

‖φqzi‖L2(ρ
z(i)

) = ‖φ‖L2(ρ̂) <∞ ,

where the same argument from Proposition 5.1 can be applied.
To complete the proof, we simply observe that |φ∇f(x, zi)| ∈ C∞pol(Rd), and the bound can be

obtained from the previous case.
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6.4 Proof of Lemma Lemma 6.2

We begin by restating the Lemma for easier reference.

Lemma 6.12 (Sufficient to Bound L2 norms). A sufficient condition for uniform stability of πNz
is if for each k = 1, . . . , N , there exist a constant Cµk > 0, independent of data and n, such that

‖µk,zqzi − µk,zqzi‖L2(ρ
z(i)

) :=

[∫
Rd

(µk,zqzi − µk,zqzi)2dρz(i)

]1/2

≤ Cµk
n
. (6.6)

Proof. We start by rewriting the definition of πNz using the new definitions

πNz = ρz

N∑
k=0

ηkµk,z = ρz(i)

N∑
k=0

ηkµk,zqzi .

Using this fact, we can apply the triangle inequality on the uniform stability condition to get

sup
z∈Z

∣∣∣∣∫
Rd
f(x, z)(πNz − πNz )dx

∣∣∣∣ ≤ sup
z∈Z

N∑
k=0

ηk
∣∣∣∣∫

Rd
f(x, z)ρz(i)(µk,zqzi − µk,zqzi)dx

∣∣∣∣
≤ sup

z∈Z

N∑
k=0

ηk‖f(x, z)‖L2(ρ
z(i)

)‖µk,zqzi − µk,zqzi‖L2(ρ
z(i)

),

where the last line follows from the Cauchy-Schwarz inequality. Since f(x, z) is has a bound inde-
pendent of z from Lemma 6.11, we can define a bounded constant C1 := supz∈Z ‖f(x, z)‖L2(ρ

z(i)
).

Using the premise of the Lemma statement, we have

sup
z∈Z

∣∣∣∣∫
Rd
f(x, z)(πNz − πNz )dx

∣∣∣∣ ≤ C1

N∑
k=0

ηk
Cµk
n
≤ C̃

n
,

for some new constant C̃, hence proving uniform stability.

6.5 Proof of Lemma 6.4

We will once again restate the Lemma.

Lemma 6.13 (Zeroth Order Energy Estimate). For all k ≥ 0, assume there exists a non-negative
constant CGk such that

‖Gk,zqzi −Gk,zqzi‖L2(ρ
z(i)

) ≤
CGk
n
.

Then there exists another non-negative constant Cµk such that

‖µk,zqzi − µk,zqzi‖L2(ρ
z(i)

) ≤
Cµk
n
.

Proof. We first recall existence and uniqueness results for Poisson equations from Lemma 6.8.

Lzµk,z = Gk,z, (6.7)

Lzµk,z = Gk,z. (6.8)
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Then for all g ∈ C∞pol(Rd), we can write the weak formulation associated to Equation (6.7)∫
Rd
−gLzµk,zdρz =

∫
Rd
−gGk,zdρz.

Applying the Green’s Theorem to the left hand side term gives∫
Rd
−gLzµk,zdρz =

1

β

∫
Rd
〈∇g,∇µk,z〉dρz =

1

β

∫
Rd
〈∇g,∇µk,zqzi〉dρz(i) .

Since ∇µk,zqzi = ∇(µk,zqzi)− µk,z∇qzi , we can write

1

β

∫
Rd
〈∇g,∇(µk,zqzi)〉dρz(i) =

∫
Rd
−gGk,zqzidρz(i) +

1

β

∫
Rd
〈∇g, µk,z∇qzi〉dρz(i) . (6.9)

We proceed similarly for Equation (6.8) and write

1

β

∫
Rd
〈∇g,∇(µk,zqzi)〉dρz(i) =

∫
Rd
−gGk,zqzidρz(i) +

1

β

∫
Rd
〈∇g, µk,z∇qzi〉dρz(i) . (6.10)

We now take the difference of the two integral formulations 6.9 and 6.10. Applying the Cauchy-
Schwarz inequality in L2 (ρz(i)), we get

1

β

∫
Rd
〈∇g,∇(µk,zqzi − µk,zqzi)〉dρz(i)

=

∫
Rd
−g(Gk,zqzi −Gk,zqzi)dρz(i) +

1

β

∫
Rd
〈∇g, µk,z∇qzi − µk,z∇qzi〉dρz(i)

≤ ‖g‖L2(ρ
z(i)

) ‖Gk,zqzi −Gk,zqzi‖L2(ρ
z(i)

) +
1

β
‖∇g‖L2(ρ

z(i)
) ‖µk,z∇qzi − µk,z∇qzi‖L2(ρ

z(i)
) .

(6.11)
Taking g = µk,zqzi − µk,zqzi and using Lemma 6.3, on the spectral gap for ρz(i) , we obtain that

1

β
‖∇ (µk,zqzi − µk,zqzi)‖L2(ρ

z(i)
)

≤ 1

λ′
‖Gk,zqzi −Gk,zqzi‖L2(ρ

z(i)
) +

1

β
‖µk,z∇qzi − µk,z∇qzi‖L2(ρ

z(i)
) .

(6.12)

From the assumption in this Lemma and from the equality

∇qzi =
−β
n
∇f(x, zi)qzi ,

we conclude that

‖∇ (µk,zqzi − µk,zqzi)‖L2(ρ
z(i)

) ≤
β

λ′
CGk
n

+
1

n
‖h‖L2(ρ

z(i)
) , (6.13)

where h = µk,z∇f(x, zi)qzi − µk,z∇f(x, zi)qzi , and we can use Lemma 6.11 to bound the norm of
h. We conclude the proof using the Poincaré inequality.
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6.6 A Couple of Corollaries

Corollary 6.14 (Generalized Zeroth Order Energy Estimate). If uz, uz, Gz, Gz are known functions
that satisfy the pair of PDEs {

Lzuz = Gz,

Lzuz = Gz,

and there exist constants Cu > 0, CG > 0 independent of data and n, such that∣∣∣∣∫
Rd
uzdρz −

∫
Rd
uzdρz

∣∣∣∣ ≤ Cu
n
,

‖Gzqzi −Gzqzi‖L2(ρ
z(i)

) ≤
CG
n
.

Then there exists a new constant Cu > 0 such that

‖uzqzi − uzqzi‖L2(ρ
z(i)

) ≤
Cu
n
.

Proof. Observe the only condition from Lemma 6.4 that we fail to satisfy is that u :=
∫
Rd uzdρz 6= 0.

As a result, we need to use the Poincaré inequality on the centered function, i.e. for all g ∈ C∞pol(Rd)
we have

‖g‖2L2(ρ
z(i)

) = ‖g − g‖2L2(ρ
z(i)

) + (g)2 ≤ 1

λ′
‖∇g‖2L2(ρ

z(i)
) + (g)2 .

Letting g = uzqzi − uzqzi , it is then sufficient to bound (g)2. To complete the proof, we can
rewrite g to match the assumption

(g)2 =

(∫
Rd
uzqzi − uzqzidρz(i)

)2

≤
(
Cu
n

)2

,

which gives us the desired bound of

‖uzqzi − uzqzi‖2L2(ρ
z(i)

) ≤
C2
u−u + C2

u

n2
,

where Cu−u is the same as Cµk from Lemma 6.4.

Corollary 6.15 (First Order Energy Estimate). If there exist a constant CGk > 0 such that

‖Gk,zqzi −Gk,zqzi‖L2(ρ
z(i)

) ≤
CGk
n
,

then there exist new constant C∇µk > 0 such that

‖∇µk,zqzi −∇µk,zqzi‖L2(ρ
z(i)

) ≤
C∇µk
n

.

Proof. We start by using the product rule ∇µk,zqzi = ∇(µk,zqzi)− µk,z∇qzi to write

‖∇µk,zqzi −∇µk,zqzi‖L2(ρ
z(i)

)

≤ ‖∇(µk,zqzi − µk,zqzi)‖L2(ρ
z(i)

) + ‖µk,z∇qzi − µk,z∇qzi‖L2(ρ
z(i)

)

=: T1 + T2.

(6.14)
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Now observe that in the proof of Lemma 6.4, we already proved a bound for T1 = ‖∇g‖L2(ρ
z(i)

),

which we can write as

T1 ≤
(λ′)1/2Cµk

n
.

To control T2, we simply need to compute ∇qzi = −β
n ∇f(x, zi)qzi to get

T2 ≤
β

n
‖µk,z∇f(x, zi)qzi − µk,z∇f(x, zi)qzi‖L2(ρ

z(i)
).

Denoting h = |µk,z∇f(x, zi)qzi −µk,z∇f(x, zi)qzi |, we can put the two bounds together and get
the desired result

‖∇µk,zqzi −∇µk,zqzi‖L2(ρ
z(i)

) ≤
(λ′)1/2Cµk + β‖h‖L2(ρ

z(i)
)

n
,

where we can provide a bound on h using Lemma 6.11.

6.7 Energy Estimate with Weighted Norm

Lemma 6.16 (Energy Estimate with C∞pol(Rd) Coefficient). If for all φ ∈ C∞pol(Rd), there exists a
constant CφGk > 0 such that

‖φGk,zqzi − φGk,zqzi‖L2(ρ
z(i)

) ≤
CφGk
n

,

then there exists a new constant Cφµk > 0 depending on φ such that

‖φµk,zqzi − φµk,zqzi‖L2(ρ
z(i)

) ≤
Cφµk
n

.

Proof. Step 1. Reduction to a Recursive Argument on the Polynomial Degree
We will start by making the observation that since φ ∈ C∞pol(Rd), there exist constants Cφ >

0, kφ ∈ N such that

|φ(x)| ≤ Cφ

1 +
d∑
j=1

|xj |kφ

 =: φ̂(x) .

Then observe it is sufficient to bound the case where φ(x) is exactly a polynomial of the φ̂(x) type,
i.e.

‖φµk,zqzi − φµk,zqzi‖L2(ρ
z(i)

) ≤ ‖φ̂(µk,zqzi − µk,zqzi)‖L2(ρ
z(i)

).

The choice for the form of φ̂ has a couple of advantages. Observe that for any first order
differential operator ∂j , we have that |∂jφ̂| = Cφkφ|xj |kφ−1 only depends on a single coordinate.

Furthermore, |∂kφj φ̂| = Cφ(kφ!) is also a constant.
This implies it is sufficient to prove a bound of the form

‖∇(φ̂(µk,zqzi − µk,zqzi))‖2L2(ρ
z(i)

)

≤
Ĉ1,φ

n2
+ Ĉ2,φ

d∑
j=1

‖∇(∂jφ̂(µk,zqzi − µk,zqzi))‖2L2(ρ
z(i)

)

+ Ĉ3,φ

d∑
j=1

‖∇(∂2
j φ̂(µk,zqzi − µk,zqzi))‖2L2(ρ

z(i)
).

(6.15)
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Observe that since ∂jφ̂, ∂
2
j φ̂ are lower degree polynomials, we can recursively apply the above

bound to all terms involving φ̂ until they vanish, hence recovering the desired result using Lemma
6.4. In particular, when φ̂ is a degree-1 polynomial, the result follows directly from (6.15). From
this point onwards, we will assume without loss of generality φ is a polynomial of the form φ̂ defined
previously.

Step 2. Energy Estimate
To prove the desired bound in (6.15), we will follow the same proof structure as Lemma 6.4,

and write down the weak form of the Poisson equation in terms of the quantity we want to bound.
To start, we will first compute

Lz(φµk,z) = −〈∇Fz,∇(φµk,z)〉+
1

β
(∆φµk,z + 2〈∇φ,∇µk,z〉+ φ∆µk,z)

= φLzµk,z + µk,zLzφ+
2

β
〈∇φ,∇µk,z〉

= φGk,z + µk,zLzφ+
2

β
〈∇φ,∇µk,z〉

Then we once again write the equation in integral form for any test function g ∈ C∞pol(Rd)

1

β

∫
Rd
〈∇g,∇(φµk,z)〉dρz

=

∫
Rd
−gφGk,z − gµk,zLzφ−

2

β
g〈∇φ,∇µk,z〉dρz

=

∫
Rd
−gφGk,z +

1

β
〈∇(gµk,z),∇φ〉 − 2

β
g〈∇φ,∇µk,z〉dρz

=

∫
Rd
−gφGk,z +

1

β
〈µk,z∇g,∇φ〉 −

1

β
〈g∇µk,z,∇φ〉dρz,

where we used Green’s Theorem in the third line above.
In the same way as Lemma 6.4, we will use the product-rule to write∇(φµk,z)qzi = ∇(φµk,zqzi)−

φµk,z∇qzi , and get the equation in the following form

1

β

∫
Rd
〈∇g,∇(φµk,zqzi)〉dρz(i)

=

∫
Rd
−gφGk,zqzi +

1

β
〈µk,zqzi∇g,∇φ〉 −

1

β
〈g∇µk,zqzi ,∇φ〉+

1

β
〈∇g, φµk,z∇qzi〉dρz(i) .

We can choose g = φ(µk,zqzi − µk,zqzi), and taking the difference with the z equation to get

1

β

∫
Rd
〈∇g,∇g〉dρz(i) =

∫
Rd
−gφ(Gk,zqzi −Gk,zqzi)dρz(i)

+
1

β

∫
Rd
〈∇g(µk,zqzi − µk,zqzi),∇φ〉dρz(i)

− 1

β

∫
Rd
〈g(∇µk,zqzi −∇µk,zqzi),∇φ〉dρz(i)

+
1

β

∫
Rd
〈∇g, φµk,z∇qzi − φµk,z∇qzi〉dρz(i)

=: T1 + T2 + T3 + T4.

(6.16)
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Step 3. Controlling Terms T1, T2, T3, T4

Since g :=
∫
Rd gdρz(i) 6= 0, we need to use a modified Poincaré inequality, namely

‖g‖2L2(ρ
z(i)

) ≤
1

λ′
‖∇g‖2L2(ρ

z(i)
) + (g)2. (6.17)

Observe that we can apply the Cauchy-Schwarz inequality to g and get

|g| ≤
∫
Rd
|φ||µk,zqzi − µk,zqzi |dρz(i)

≤ ‖φ‖L2(ρ
z(i)

)‖µk,zqzi − µk,zqzi‖L2(ρ
z(i)

)

≤ Cµk
n
‖φ‖L2(ρ

z(i)
),

(6.18)

where we used the result of Lemma 6.4. Here we note the norm of φ can be bounded using Lemma
6.11.

Returning to (6.16), we will control T1 using Young’s inequality and the assumption, i.e.

T1 ≤
1

2cy1
‖g‖2L2(ρ

z(i)
) +

cy1
2
‖φ(Gk,zqzi −Gk,zqzi)‖2L2(ρ

z(i)
)

≤ 1

2cy1λ
′ ‖∇g‖

2
L2(ρ

z(i)
) +

1

2cy1

C2
µk

n2
‖φ‖2L2(ρ

z(i)
) +

cy1
2

C2
Gk

n2
,

(6.19)

where we also used the modified Poincaré inequality (6.17) above with the |g| bound.
To control T2, we will apply Cauchy-Schwarz and Young’s inequalities to separate ∇g, i.e.

T2 ≤
1

β

∫
Rd
|∇g||(µk,zqzi − µk,zqzi)∇φ|dρz(i)

≤ 1

2βcy2
‖∇g‖2L2(ρ

z(i)
) +

cy2
2β
‖(µk,zqzi − µk,zqzi)∇φ‖2L2(ρ

z(i)
).

To convert to the desired form of (6.15), we observe

‖(µk,zqzi − µk,zqzi)∇φ‖2L2(ρ
z(i)

)

=

∫
Rd

d∑
j=1

(∂jφ)2(µk,zqzi − µk,zqzi)2dρz(i)

=
d∑
j=1

‖∂jφ(µk,zqzi − µk,zqzi)‖2L2(ρ
z(i)

)

≤
d∑
j=1

1

λ′
‖∇(∂jφ(µk,zqzi − µk,zqzi))‖2L2(ρ

z(i)
) + ‖∂jφ‖2L2(ρ

z(i)
)

C2
µk

n2
,

where we used the modified form of the Poincaré inequality (6.17) and the bound on |g|. Putting
everything together, we have the following bound

T2 ≤
1

2βcy2
‖∇g‖2L2(ρ

z(i)
) +

cy2
2β

d∑
j=1

1

λ′
‖∇(∂jφ(µk,zqzi − µk,zqzi))‖2L2(ρ

z(i)
)

+
cy2
2β

d∑
j=1

‖∂jφ‖2L2(ρ
z(i)

)

C2
µk

n2
.

(6.20)
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To control T3, we will apply a similar approach as T2. We will start with Young’s inequality to
isolate g first

T3 ≤
1

β

∫
Rd

1

2cy3
g2 +

cy3
2
〈∇µk,zqzi −∇µk,zqzi ,∇φ〉2dρz(i)

≤ 1

2cy3λ
′β
‖∇g‖2L2(ρ

z(i)
) +

cy3
2β
‖|∇µk,zqzi −∇µk,zqzi | |∇φ|‖2L2(ρ

z(i)
).

Next we can rewrite in terms of a sum again

‖|∇µk,zqzi −∇µk,zqzi | |∇φ|‖2L2(ρ
z(i)

) =
d∑
j=1

‖∂jφ(∇µk,zqzi −∇µk,zqzi)‖2L2(ρ
z(i)

).

Using the product rule, we can write

∇µk,zqzi∂jφ = ∇(µk,zqzi∂jφ)− µk,z∇(qzi∂jφ),

then we use the inequality (a+ b)2 ≤ 2a2 + 2b2 twice to write

‖∂jφ(∇µk,zqzi −∇µk,zqzi)‖2L2(ρ
z(i)

)

≤ 2‖∇(∂jφµk,zqzi − ∂jφµk,zqzi)‖2L2(ρ
z(i)

) + 2‖µk,z∇(qzi∂jφ)− µk,z∇(qzi∂jφ)‖2L2(ρ
z(i)

)

≤ 2‖∇(∂jφµk,zqzi − ∂jφµk,zqzi)‖2L2(ρ
z(i)

) + 4‖(µk,z∇qzi − µk,z∇qzi)∂jφ‖2L2(ρ
z(i)

)

+ 4‖(µk,zqzi − µk,zqzi)∇∂jφ‖2L2(ρ
z(i)

).

Recalling ∇qzi = qzi
−β
n ∇f(x, zi), we have

‖(µk,z∇qzi − µk,z∇qzi)∂jφ‖2L2(ρ
z(i)

)

≤ β2

n2
‖(µk,zqzi∇f(x, zi)− µk,zqzi∇f(x, zi))∂jφ‖2L2(ρ

z(i)
)

=:
β2

n2
‖h1,j‖2L2(ρ

z(i)
).

Since ∂jφ is only a function of xj , we also have

‖(µk,zqzi − µk,zqzi)∇∂jφ‖2L2(ρ
z(i)

)

= ‖(µk,zqzi − µk,zqzi)∂2
jφ‖2L2(ρ

z(i)
)

≤ 1

λ′
‖∇((µk,zqzi − µk,zqzi)∂2

jφ)‖2L2(ρ
z(i)

) + ‖∂2
jφ‖2L2(ρ

z(i)
)

C2
µk

n2

Putting everything together, we have the following bound

T3 ≤
1

2cy3λ
′β
‖∇g‖2L2(ρ

z(i)
) +

cy3
2β

d∑
j=1

2‖∇(∂jφµk,zqzi − ∂jφµk,zqzi)‖2L2(ρ
z(i)

)

+
cy3
2β

d∑
j=1

(
4
β2

n2
‖h1,j‖2L2(ρ

z(i)
) +

4

λ′
‖∇((µk,zqzi − µk,zqzi)∂2

jφ)‖2L2(ρ
z(i)

) +
4C2

µk

n2

)
,

(6.21)
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which satisfies the desired form in (6.15).
Lastly we have control over T4 due to the computation ∇qzi = qzi

−β
n ∇f(x, zi), which leads to

T4 ≤
∫
Rd

1

β
|∇g|β

n
|φ(µk,zqzi∇f(x, zi)− µk,zqzi∇f(x, zi))|dρz(i)

≤ 1

2cy4
‖∇g‖2L2(ρ

z(i)
) +

cy4
2n2
‖h2‖2L2(ρ

z(i)
),

(6.22)

where we define h2 := |φ(µk,zqzi∇f(x, zi)− µk,zqzi∇f(x, zi))|.
Putting together (6.19) to (6.22), we have a bound of the desired form

‖∇(φ(µk,zqzi − µk,zqzi))‖2L2(ρ
z(i)

)

≤
Ĉ1,φ

n2
+ Ĉ2,φ

d∑
j=1

‖∇(∂jφ(µk,zqzi − µk,zqzi))‖2L2(ρ
z(i)

)

+ Ĉ3,φ

d∑
j=1

‖∇(∂2
jφ(µk,zqzi − µk,zqzi))‖2L2(ρ

z(i)
).

(6.23)

where we have the constants

Ĉ0,φ =
1

β
− 1

2cy1λ
′ −

1

2βcy2
− 1

2cy3βλ
′ −

1

2cy4
,

Ĉ1,φ =
1

Ĉ0,φ

(
C2
µk

2cy1
‖φ‖2L2(ρ

z(i)
) +

cy1C
2
Gk

2
+
cy2
2β
‖∇φ‖2L2(ρ

z(i)
)C

2
µk

+ 2cy3β

d∑
j=1

‖h1,j‖2L2(ρ
z(i)

) +
2cy3C

2
µk
d

β
+
cy4
2
‖h2‖2L2(ρ

z(i)
)

)
,

Ĉ2,φ =
1

Ĉ0,φ

cy2
2βλ′

,

Ĉ3,φ =
1

Ĉ0,φ

2cy3
βλ′

.

Here we note the terms h1,j , h2 have bounded norms due Lemma 6.11.

Step 4. Completing the Proof
We start by observing that ‖∇(∂jφ(µk,zqzi − µk,zqzi))‖2L2(ρ

z(i)
) satisfy an inequality in the same

form as (6.23), i.e. we can get a bound in the form of

‖∇(φ(µk,zqzi − µk,zqzi))‖2L2(ρ
z(i)

)

≤
C1,l

n2
+

d∑
j=1

C2,l,j‖∇(∂l+1
j φ(µk,zqzi − µk,zqzi))‖2L2(ρ

z(i)
)

+

d∑
j=1

C3,l,j‖∇(∂l+2
j φ(µk,zqzi − µk,zqzi))‖2L2(ρ

z(i)
),
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where we have the following recursion update for constants

C1,l+1 = C1,l +
d∑
j=1

C2,l,jĈ1,∂l+1
j φ ,

C2,l+1,j = C2,l,jĈ2,∂l+1
j

+ C3,l,j ,

C3,l+1,j = C2,l,jĈ3,∂l+1
j φ .

Finally, we obtain the desired bound from using the modified Poincaré (6.17) and Cauchy-
Schwarz inequalities

‖φ(µk,zqzi − µk,zqzi)‖2L2(ρ
z(i)

)

≤ 1

λ′
‖∇(φ(µk,zqzi − µk,zqzi))‖2L2(ρ

z(i)
) + ‖φ‖2L2(ρ

z(i)
)‖µk,zqzi − µk,zqzi‖

2
L2(ρ

z(i)
)

≤
C1,kφ

λ′n2
+

dC2,kφC
2
φ(kφ!)2

λ′
+
‖φ‖2L2(ρ

z(i)
)

λ′

 ‖∇(µk,zqzi − µk,zqzi)‖2L2(ρ
z(i)

)

≤

(
C1,kφ

λ′
+ dC2,kφC

2
φ(kφ!)2C2

µk
+ ‖φ‖2L2(ρ

z(i)
)

)
1

n2
.

6.8 Proof of Lemma 6.7

We will once again restate the Lemma for easier reference.

Lemma 6.17 (Higher Order Energy Estimates). Fix k ∈ N. If for all φ ∈ C∞pol(Rd), ` < k, and

multi-index α ∈ Nd, there exists a constant Cφ∂αG` > 0, such that we have

‖φ(∂αG`,z)qzi − φ(∂αG`,z)qzi‖L2(ρ
z(i)

) ≤
Cφ∂αG`
n

,

then for all J ∈ N, and degree-J differential operator L with coefficients in C∞pol(Rd) (i.e.

L :=
∑

0≤|α|≤J φ
α(x)∂α, where φα(x) ∈ C∞pol(Rd) for each |α| ≤ J), there exist a constant CLµk > 0

such that

‖Lµk,zqzi − Lµk,zqzi‖L2(ρ
z(i)

) ≤
CLµk
n

.

In particular, the above inequality holds for L = φ′∂α′L
∗
`,z with φ′ ∈ C∞pol(Rd), α′ ∈ Nd, and

J = 2`+ 2 + |α′|, therefore there exists a constant Cφ′∂α′Gk > 0 such that

‖φ′(∂α′Gk,z)qzi − φ′(∂α′Gk,z)qzi‖L2(ρ
z(i)

) ≤
Cφ′∂α′Gk

n
,

hence proving the induction step from k − 1 to k.

Proof. We start by using the triangle inequality on the definition of L to get

‖Lµk,zqzi − Lµk,zqzi‖L2(ρ
z(i)

) ≤
∑

0≤|α|≤J

‖φα(∂αµk,zqzi − ∂αµk,zqzi)‖L2(ρ
z(i)

) .
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Therefore it is sufficient to prove the case when L = φα∂α, and sum the up the constants after.
At this point, we will prove the desired result using induction on J = |α|.

Step 1. Induction Case J = 1
The case when φ(x) = 1, J = 1 follows from Corollary 6.15. To prove this result for all

φ ∈ C∞pol(Rd), we start by computing

∂α(Lzµk,z) = (∂αLz)µk,z + Lz(∂αµk,z),

where we define ∂αLz as the derivative only on its coefficients, i.e.

∂αLz :=
∑
k

∂αφ
k∂k .

Now we observe that ∂αµk,z satisfies a Poisson equation

Lz∂αµk,z = ∂α(Lzµk,z)− (∂αLz)µk,z

= ∂αGk,z + 〈∇∂αFz,∇µk,z〉

=: G̃z.

Using this equation, it is now sufficient to check the conditions of Corollary 6.14. To this end,
we write

‖G̃zqzi − G̃zqzi‖L2(ρ
z(i)

) ≤ ‖∂αGk,zqzi − ∂αGk,zqzi‖L2(ρ
z(i)

)

+ ‖〈∇∂αFz(i) ,∇µk,zqzi −∇µk,zqzi〉‖L2(ρ
z(i)

)

+
1

n
‖〈∇∂αf(x, zi),∇µk,zqzi〉‖L2(ρ

z(i)
)

+
1

n
‖〈∇∂αf(x, zi),∇µk,zqzi〉‖L2(ρ

z(i)
)

= T1 + T2 + T3 + T4 .

Notice that T1 is bounded by assumption, and T3, T4 are bounded by Lemma 6.11. We now
turn to T2, denoting φ = ∂αFz(i) , we can write

T2 ≤ ‖ |∇φ| |∇µk,zqzi −∇µk,zqzi | ‖L2(ρ
z(i)

)

=
d∑
j=1

‖∂jφ|∇µk,zqzi −∇µk,zqzi | ‖L2(ρ
z(i)

)

≤
d∑
j=1

‖∇(∂jφµk,z)qzi −∇(∂jφµk,z)qzi‖L2(ρ
z(i)

)

+
d∑
j=1

‖∇∂jφµk,zqzi −∇∂jφµk,zqzi‖L2(ρ
z(i)

)

≤ 1

n

d∑
j=1

C∇(∂jφµk) + C|∇∂jφ|µk ,

where both bounds follow from Lemma 6.16. To summarize we have the following bound

‖G̃zqzi − G̃zqzi‖L2(ρ
z(i)

) ≤
1

n

C∂αGk +
d∑
j=1

C∇(∂jφµk) + C|∇∂jφ|µk + ‖h1‖L2(ρ
z(i)

) + ‖h2‖L2(ρ
z(i)

)

 ,
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where we define h1 := |〈∇∂αf(x, zi),∇µk,zqzi〉|, h2 := |〈∇∂αf(x, zi),∇µk,zqzi〉|.

Step 2. Induction Step
Assuming the estimates in the Lemma statement are true for 1, 2, · · · , J − 1, we will now prove

the inequality for the case J . We begin by computing the product rule

∂α(Lzµk,z) = Lz∂αµk,z +

J∑
l=1

∑
α1+α2=α
|α1|=l

(∂α1Lz)(∂α2µk,z),

where we define for all |α| > 0
(∂αLz)φ := −〈∇∂αFz,∇φ〉.

Here we also observe the Laplacian term is contained in Lz∂αµk,z.
By invoking the original equation Lzµk,z = Gk,z, we can write a new Poisson equation of the

form

Lz∂αµk,z = ∂αGk,z −
J∑
l=1

∑
α1+α2=α
|α1|=l

(∂α1Lz)(∂α2µk,z), (6.24)

where we note that |α2| < J on the right hand side.
By using Lemma 6.4 and Corollary 6.14, we observe it is sufficient to provide an L2(ρz(i))-norm

bound on quantities of the type

g := (∂α1Lz)(∂α2µk,z)qzi − (∂α1Lz)(∂α2µk,z)qzi .

Then we can rewrite g by decomposing into more familiar terms

g = −〈∇∂α1Fz(i) , (∇∂α2µk,z)qzi − (∇∂α2µk,z)qzi〉

− 1

n
〈∇∂α1f(x, zi), (∇∂α2µk,z)qzi〉

+
1

n
〈∇∂α1f(x, zi), (∇∂α2µk,z)qzi〉

=: T1 + T2 + T3.

To control T1, we start by denoting φ = |∇∂α1Fz(i) | and use Cauchy-Schwarz and the product
rule to get

‖T1‖L2(ρ
z(i)

) ≤ ‖φ(∇∂α2µk,z)qzi − φ(∇∂α2µk,z)qzi‖L2(ρ
z(i)

)

≤ ‖∇(φ∂α2µk,z)qzi −∇(φ∂α2µk,z)qzi‖L2(ρ
z(i)

)

+ ‖∇φ(∂α2µk,z)qzi −∇φ(∂α2µk,z)qzi‖L2(ρ
z(i)

)

≤
C∇(φ∂α2µk)

n
+

d∑
j=1

C∂jφ∂α2µk
n

,

where we get the bound from the induction assumption since |α2| < J .
To control T2, T3, it is sufficient to apply Lemma 6.11.
To complete the proof, it is sufficient to invoke Lemma 6.16 on (6.24), so that we can handle

operators of the form L = φα∂α, where φα ∈ C∞pol(Rd).
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6.9 Proof of Lemma 6.5

We will once again state the Lemma for easier reference.

Lemma 6.18 (C∞pol(Rd) Coefficients). For all ` ≥ 0 and α ∈ Nd, the operator L∗`,z has C∞pol(Rd)
coefficients. I.e. there exist functions φ`,α ∈ C∞pol(Rd) such that we can write

L∗`,z =
∑

0≤|α|≤2`+2

φ`,α(x)∂α .

Proof. We start by writing out the recursive definition of the operator AN+1, where if AN =∑
αA

α
N (x)∂α, then we have

AN+1 =
∑
α

d∑
j=1

AαN (x)

(
−∂jFz∂j +AαN

1

β
∂jj

)
∂α.

Since the only coefficients of Lz are Fz and 1/β, all products of such coefficients must also be
C∞pol(Rd).

Next we will prove LN has C∞pol(Rd) coefficients by induction on N . The N = 0 case follows
trivially since L0 = I. Now assuming the case for 0, 1, . . . , N − 1, we will prove the case for LN .

We recall the definition of LN

LN = AN+1 +
N∑
l=1

Bl
l!

∑
n1+···nl+1=n−l

Ln1 · · ·LnlAnl+1+1 .

Observe any composition of operators with C∞pol(Rd) is still an operator with C∞pol(Rd) coeffi-
cients. And since LN is defined recursively using Lj with j < N , we have that LN must have
C∞pol(Rd) coefficients.

We will now compute the adjoint operator using integration by parts. First we let ψα ∈ C∞pol(Rd)
be the coefficients of LN , i.e.

LN =
∑

0≤|α|≤2N+2

ψα∂α .

Then for any f, g ∈ C∞pol(Rd), we have∫
Rd
fLNgρdx =

∫
Rd
g

∑
0≤|α|≤2N+2

ψα(x)∂αgρdx

=

∫
Rd

∑
0≤|α|≤2N+2

(−1)|α|f∂α(gψαρ)dx .

Since g, ψα, Fz ∈ C∞pol(Rd), we must then also have that ∂α(gψαρ) =: φαρ with φα ∈ C∞pol(Rd),
which is the desired result.

6.10 Proof of Lemma 6.6

We will once again start by restating the Lemma.
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Lemma 6.19. For all ` > 0, there exists a differential operator L̂` := L̂`(x) of order 2` + 2 with
C∞pol(Rd) coefficients, and independent of n, such that we can write

1

n
L̂∗` = L∗`,z − L∗`,z .

Furthermore, for all ` ≥ 0, φ ∈ C∞pol(Rd), and α ∈ Nd, there exist non-negative constants C`,φ∂α,

depending on the L2 (ρz(i))-norm of µk−`,z and its derivatives up to order 2`+ 2 + |α|, such that

∥∥φ∂α((L∗`,z − L∗`,z)µk−`,z)qzi
∥∥
L2(ρ

z(i)
)
≤
C`,φ∂α
n

.

Proof. We will separate the proof into several steps.

Step 1. Write 1
nÂN = AN,z −AN,z

We start by recalling ζ0 is a uniform subsample of z of size nb, but we can further define without
loss of generality ζ0 as a uniform subsample of z, such that they ζ0 = ζ0 whenever zi /∈ ζ0. Then
we have

AN,z = EzÃN,ζ0 ,

where the expectation is over the randomness of ζ0 only.
We will then write out the recursive definition of the operator ÃN+1(x, ζ0), where we expand

the coefficients of the operator as ÃN (x, ζ0) =
∑

α Ã
α
N (x, ζ0)∂α, then we can write

ÃN+1(x, ζ0) =
∑
α

d∑
j=1

ÃαN (x, ζ0)

(
−∂jFζ0∂j +

1

β
∂jj

)
∂α.

Since A0 = I, A1 = L, we can observe this forms a binomial type expansion, where formally
if we define a sense of multiplication such that the differential operators ∂α does not interact with
the coefficients, we can write

“ÃN (x, ζ0) =

 d∑
j=1

−∂jFζ0∂j +
1

β
∂jj

N

” ,

where we write in quotation marks to denote the fact that we are defining a new multiply operation.
Rigorously, we can write all terms of ÃN (x, ζ0) as follows

ÃN (x, ζ0) =

N∑
l=0

(
N

l

) d∑
i1,...,iN=1

(−1)l∂i1Fζ0 · · · ∂ilFζ0
1

βN−l
∂i1 · · · ∂il(∂il+1

· · · ∂iN )2

=:
∑
α

cα∂i1Fζ0 · · · ∂ilFζ0∂α ,

where we slightly abuse the notation in the last sum, such that the sum is still over l, i1, . . . , iN ,
and therefore α may repeat.

Now consider the same definition for z and ζ0, we can write

ÃN (x, ζ0)− ÃN (x, ζ0) =
∑
α

cα(∂i1Fζ0 · · · ∂ilFζ0 − ∂i1Fζ0 · · · ∂ilFζ0)∂α .
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To find an operator ÂN such that 1
nÂN = AN,z −AN,z, it is sufficient to show that for each α,

we can find a function φα independent of n such that

1

n
φα = Ez

(
∂i1Fζ0 · · · ∂ilFζ0 − ∂i1Fζ0 · · · ∂ilFζ0

)
.

To this end, we can use the decompositions

Fz = Fz(i) +
1

n
f(x, zi), Fζ0 = F

ζ
(i)
0

+
1

nb
f(x, zi)1B,

where 1 is the indicator function, and the event B is defined as B = {zi ∈ ζ0} = {zi ∈ ζ0}.
This leads to

∂i1Fζ0 · · · ∂ilFζ0 − ∂i1Fζ0 · · · ∂ilFζ0
= ∂i1Fζ(i)0

(∂i2Fζ0 · · · ∂ilFζ0 − ∂i2Fζ0 · · · ∂ilFζ0)

+
1

nb
1B

(
∂i1f(x, zi)∂i2Fζ0 · · · ∂ilFζ0 − ∂i1f(x, zi)∂i2Fζ0 · · · ∂ilFζ0

)
,

where we observe that the terms inside the second bracket are n-independent. If we take the
expectation Ez on these terms, we will be averaging over

(
n
nb

)
terms, and only nb

n

(
n
nb

)
=
(
n−1
nb−1

)
of

these terms will be non-zero due to the indicator function 1B.
Hence if we let φζ0 be any n-independent function, we will have

Ez
1

nb
1Bφζ0 =

1

nb

1

n

∑
ζ0⊂z

1Bφζ0 =
1

n
φ̃, (6.25)

where φ̃ is also n-independent.
We can continue taking the expansion to get

∂i1Fζ0 · · · ∂ilFζ0 − ∂i1Fζ0 · · · ∂ilFζ0

=
1

nb
1B

l∑
j=1

∂i1Fζ(i)0

· · · ∂ij−1Fζ(i)0

∂ijf(x, zi)∂ij+1Fζ0 · · · ∂ilFζ0

− 1

nb
1B

l∑
j=1

∂i1Fζ(i)0

· · · ∂ij−1Fζ(i)0

∂ijf(x, zi)∂ij+1Fζ0 · · · ∂ilFζ0

=:
1

nb
1Bφ

α
ζ0,ζ0

,

where the sum follows from recursively applying the first step to the terms ∂i1Fζ(i)0

(∂i2Fζ0 · · · ∂ilFζ0−
∂i2Fζ0 · · · ∂ilFζ0).

Computing the expectation using Equation (6.25), we get that

Ez
1

nb
1Bφ

α
ζ0,ζ0

=
1

n
φα.

This implies we can define the desired operator as

ÂN =
∑
α

cαφ
α∂α,
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hence completing the proof for the first step.

Step 2. Finding L̂N
We will prove by induction over N that there exists an operator L̂N independent of n such that

1
n L̂N = LN,z − LN,z.

For the N = 1 case, it follows by computing

LN,z − LN,z = Lz − Lz =
1

n

d∑
j=1

−∂j(f(x, zi)− f(x, zi))∂j .

Now assuming the case for N − 1, we will prove the statement for case N . We first recall the
definition of LN

LN = AN+1 +

N∑
l=1

Bl
l!

∑
n1+···nl+1=n−l

Ln1 · · ·LnlAnl+1+1 .

Since AN,z −AN,z = 1
nÂN , it is sufficient to analyze

Ln1,z · · ·Lnl,zAnl+1+1,z − Ln1,z · · ·Lnl,zAnl+1+1,z

= (Ln1,z · · ·Lnl,z − Ln1,z · · ·Lnl,z)Anl+1+1,z + Ln1,z · · ·Lnl,z
1

n
Ânl+1+1

Now observe that since n1, · · · , nl < N , we have 1
n L̂nj = Lnj ,z − Lnj ,z for all j = 1, · · · , l. This

allows us to write

Ln1,z · · ·Lnl,z − Ln1,z · · ·Lnl,z
= (Ln1,z − Ln1,z)Ln2,z · · ·Lnl,z + Ln1,z(Ln2,z · · ·Lnl,z − Ln2,z · · ·Lnl,z)

=
1

n
L̂n1Ln2,z · · ·Lnl,z + Ln1,z(Ln2,z · · ·Lnl,z − Ln2,z · · ·Lnl,z)

=
1

n

l∑
j=1

Ln1,z · · ·Lnj−1,zL̂njLnj+1,z · · ·Lnl,z

Putting it together we have

L̂N

= ÂN+1 +
N∑
l=1

Bl
l!

∑
n1+···nl+1=n−l

l∑
j=1

Ln1,z · · ·Lnj−1,zL̂njLnj+1,z · · ·Lnl,zAnl+1+1,z

+
N∑
l=1

Bl
l!

∑
n1+···nl+1=n−l

Ln1,z · · ·Lnl,zÂnl+1+1 .

Since the adjoint operation is linear, we can compute the adjoint for each operator separately.
Hence we have the desired result

1

n
L̂∗N = LN,z − LN,z .

Step 3. Providing the Bound
To complete the bound it is sufficient to observe∥∥φ∂α((L∗`,z − L∗`,z)µk−`,z)qzi

∥∥
L2(ρ

z(i)
)

=
1

n

∥∥∥φ∂α(L̂∗Nµk−`,z)qzi

∥∥∥
L2(ρ

z(i)
)
≤ C

n
,

where the bound follows from Lemma 6.11.
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7 Runtime Complexity: Proof of Corollary 2.5

We will restate and prove the result here.

Corollary 7.1 (Runtime Complexity). Suppose {Xk}k≥0 is any discretization of Langevin diffusion
(1.3) admiting an approximate stationary distribution πNz of the type in Theorem 2.3. Then there
exists a constant C > 0 (depending on N), such that for all

ε > 0 , 0 < η <
2m

M2
, n ≥ C

ε(1− η)
, k ≥ C

ε1/N
log

1

ε
, (7.1)

we achieve the following expected generalization bound

|E [F (Xk)− Fz(Xk)] | ≤ ε . (7.2)

Proof. We will start by decomposing the generalization error via an approximation step with πNz

|E [F (Xk)− Fz(Xk)] |
≤
∣∣E [F (Xk)− πNz (F )

] ∣∣+
∣∣E [πNz (F )− πNz (Fz)

] ∣∣+
∣∣E [πNz (Fz)− Fz(Xk)

] ∣∣
≤C(e−λkη/2 + ηN ) +

C

n(1− η)
,

(7.3)

where we used the results of Theorems 2.3 and 2.4 and absorbed dependence on x, F, Fz into the
constant C.

It is then sufficient to confirm all three terms are of order O(ε). Observe clearly choosing
η = O(ε1/N ) and n = Ω(ε−1) is sufficient for the latter two terms. We will then observe that

e−λkη/2 = O(ε) ⇐⇒ k = O(η−1 log(ε−1)) , (7.4)

and substituting in the choice of η−1 = ε−1/N gives us the desired result.
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A Signed Measure Results

We start this section by mentioning that the approximate stationary measure constructed using
weak backward error analysis can be a signed measure.

Proposition A.1 (The Approximate Stationary Measure is Signed). Consider the following simple
Ornstein-Uhlenbeck process in Rd

dX(t) = −X(t)dt+

√
2

β
dW (t),

with f(x, z) = 1
2 |x|

2 for all z ∈ Z. We have that whenever 2
d < η, the approximate density π1(x) is

not always positive, specifically

π1(0) = (1 + ηµ1(0))ρ(0) < 0.

Proof. We first write down the generator of this process

Lφ =

d∑
i=1

−xi∂iφ+
1

β
∂iiφ,

and therefore leading to the following operator A2,

A2φ =
∑
k

d∑
i=1

Ak
1 (x)

[
(−xi)∂i +

1

β
∂ii

]
∂kφ

=
∑
k

d∑
i,j=1

xixj∂ijφ−
2

β
xi∂ijjφ+

1

β2
∂iijjφ.

Following the definition of L1 (5.3), we can compute

L1 = A2 +B1L0A1 = A2 +B1L
2,
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where B1 is the first Bernoulli number. Now observe that since L is self-adjoint with respect to
L2(ρ), i.e. L? = L, we have

L?11 = A?2 +B1(L?)21 = A?21.

Here we will compute explicitly A?21, and we start by writing

(A?21)ρ =
d∑

i,j=1

∂ij(xixjρ) +
2

β
∂ijj(xiρ) +

1

β2
∂iijjρ =: T1 + T2 + T3.

We first compute one derivative of T3 to match T2 to get

T3 =

d∑
i,j=1

∂ijj
1

β
(−xiρ),

this implies that we can combine T2 and T3

T2 + T3 =
d∑

i,j=1

∂ijj
1

β
(xiρ) =

d∑
i,j=1

∂ij

(
δij
β
ρ− xixjρ

)
,

where δij denotes the Kronecker delta, and we add the T1 term as well to get

T1 + T2 + T3 =
d∑

i,j=1

∂ij
δij
β
ρ =

d∑
i=1

∂ii
1

β
ρ =

d∑
i=1

∂i (−xiρ) =
d∑
i=1

βx2
i ρ− dρ.

This implies we have the following PDE for µ1

Lµ1 = −L?11 =⇒
d∑
i=1

−xi∂iµ1 +
1

β
∂iiµ1 = d−

d∑
i=1

βx2
i .

Since the equation has a unique solution that satisfies the integral constraint
∫
µ1dρ = 0 (see

Proposition 6.8), we can explicitly guess the solution

µ1 =
β

2
|x|2 − c,

where to satisfy the integral constraint, we must have

c =

∫
β

2
|x|2 1

(2π/β)d/2
exp

(
−β|x|2

2

)
dx =

d

2
.

This implies

inf
x
µ1 = µ1(0) = −d

2
.

Finally this implies that whenever η > 2
d , we have

π1(0) =

(
1− ηd

2

)
ρ(0) < 0.
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Now that we know our approximate measure πN can be signed, we can no longer define uniform
stability with respect to an expectation over the random algorithm. Instead we naturally extend
the definition based on the integral with respect to the signed measure instead.

Definition A.2 (Uniform Stability). A collection of distributions {πz} on Rd indexed by z ∈ Zn
is said to be ε-uniformly stable if for all z, z ∈ Zn with only one differing coordinate

sup
z∈Z
|πz(f(·, z))− πz(f(·, z))| ≤ ε. (A.1)

Proposition A.3 (Generalization). Suppose the collection of distributions {πz} is ε-uniformly
stable, and that for all (z, z) ∈ Zn+1, we also have f(·, z) ∈ L1(πz). Then {πz} has ε-expected
generalization error, or more precisely

|E [πz(Fz)− πz(F )] | ≤ ε . (A.2)

Proof. it is sufficient to realize that since f(·, z) is integrable with respect to πz, all the usual
manipulations are well defined. We will include the proof for completeness as it is an unintuitive
claim.

We will start by denoting z = (z1, . . . , zn), ẑ = (z1, . . . , zn), and also the replaced one data set
ẑ(i) = (z1, . . . , zi−1, zi, zi+1, . . . , zn).

With this we can write

Ez∼Dn

∫
Rd

1

n

n∑
i=1

f(x, zi)dπz(x) = E(z,ẑ)∼D2n

∫
Rd

1

n

n∑
i=1

f(x, zi)dπẑ(i)(x)

= E(z,ẑ)∼D2n

∫
Rd

1

n

n∑
i=1

f(x, zi)dπz(x) + δ,

where we define δ as

δ := E(z,ẑ)∼D2n

∫
Rd

1

n

n∑
i=1

f(x, zi)dπẑ(i)(x)−
∫
Rd

1

n

n∑
i=1

f(x, zi)dπz(x).

Therefore, ε-uniform stability implies the difference between the two integrals is at most ε, hence
we have the generalization error is |δ| ≤ ε.

We observe that uniform stability is a stronger notion than needed here. In fact, we will only
need a sense of stability in expectation for generalization in expectation (Shalev-Shwartz et al.,
2010). Regardless, we have shown that if πNz is ε-uniformly stable, then we have also have that
|T2| ≤ ε as desired.

B Additional Calculations

In this section, we will consider the Ornstein-Uhlenbeck process in R, or d = 1

dX(t) = −X(t)dt+
√

2/β dW (t),

where W (t) is the standard one-dimensional Brownian motion. This corresponds to the loss
function being F (x) = 1

2x
2. This implies we have the Gibbs distribution is a one-dimensional

Gaussian

ρ(x) =
1√

2π/β
exp

(
−βx

2

2

)
.
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B.1 Computing the Relevant Operators

The above definition leads us to the following simple generator

Lφ = −x∂φ+
1

β
∂2φ,

and therefore leading to the operators

Ak =

k∑
`=0

(
k

`

)
(−x)`

1

βk−`
∂2k−`.

We will also obtain the operators

L0 = L,

L1 = A2 +B1L0A1 = A2 +B1L
2,

L2 = A3 +B1(L0A2 + L1A1) +B2(L0L0A1).

Next we will compute several adjoint operators with respect to L2(ρ).
First we recall L is self-adjoint, i.e. L∗ = L.
Then we can compute for all f, g ∈ C∞pol(R)∫

∂fgρdx =

∫
−f∂gρ− fg∂ρdx =

∫
f(−∂ + βx)gρdx,

which means (∂)∗ = −∂ + βx.
At this point, we will use Mathematica (Inc.) to compute all adjoint operators by composition of

the first order adjoint operator. For example, we can compute all of the following using a recursion
scheme, where a ∈ C∞pol(R)

(a∂)∗ = −a∂ − ∂a+ βxa,

(∂2)∗ = ∂2 − 2βx∂ + β2x2 − β,
(a∂2)∗ = a∂2 + 2(∂a− βxa)∂ + (∂2a− βa− 2βx∂a+ β2x2a),

(∂3)∗ = −∂3 + 3βx∂2 + (3β − 3β2x2)∂ + (β3x3 − 3β2x).

Next we will compute A∗2, A
∗
3

A∗2 =

(
x2∂2 − 2x

β
∂3 +

1

β2
∂4

)∗
=

1

β∗
∂4 − 2x

β
∂3 + x2∂2 − 2x∂ + (βx− 1).

A∗3 =

(
−x3∂3 +

3x2

β
∂4 +

−3x

β2
∂5 +

1

β3
∂6

)∗
=

1

β3
∂6 − 3x

β2
∂5 +

3x2

β
∂4 −

(
x3 +

6x

β

)
∂3 +

(
9x2 − 9

β

)
∂2 − (9x− 3βx3)∂.

Finally, we can conclude

L∗1 = A∗2 +B1L
2,

L∗2 = A∗3 +B1(A∗2L+ LL∗1) +B2L
3.
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B.2 Solving the PDEs

To compute the approximations for π2 = ρ(1 + ηµ1 + η2µ2), we will need to solve the following two
PDEs

Lµ1 = −L∗11, Lµ2 = −L∗1µ1 − L∗21,

with the natural constraint that
∫
µ1dρ =

∫
µ2dρ = 0.

B.2.1 First PDE

From the previous section, we have that

−L∗11 = −(A∗2 +B1L
2)1 = −A∗21 = 1− βx2.

This means we need to first solve

−x∂µ1 +
1

β
∂2µ1 = 1− βx2.

Here we can guess the solution µ1 = β
2x

2 + c, which gives us

−x(βx) +
1

β
β = 1− βx2,

and the constant is naturally

c = −
∫
β

2
x2dρ = −β

2

1

β
=
−1

2
,

where we used the fact that the Gaussian variance is 1/β.

B.2.2 Second PDE

We need to compute −L∗1µ1 = −(A∗2 +B1L
2)µ1, starting with the first term A∗2µ1(

1

β2
∂4 − 2x

β
∂3 + x2∂2 − 1

β
∂2 + βx2 − 1

)(
β

2
x2 − 1

2

)
=

1

2
(βx2 − 1).

B.3 Toy Example

In this subsection, we consider a one-dimensional problem of optimizing a loss function F (x) = 1
2x

2

with deterministic gradient. The Langevin update can be written as

Xk+1 = Xk − ηXk +

√
2η

β
ξk, X0 = x.

where ξk ∼ N(0, 1) are i.i.d. random variables.
In this case, the corresponding continuous time Langevin process is described by the following

SDE

dX(t) = −X(t)dt+

√
2

β
dW (t), X(0) = x,

where W (t) is a standard Brownian motion.
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Observe we can compute the time-marginal distributions of both processes. Let’s start by
observing that Xk is a sum of i.i.d. normal random variables, hence it must also be a normal
random variable. We simply need to estimate the mean and variance.

To compute the parameters, we start by rewriting the update rule as

Xk+1 = Xk − ηXk +

√
2η

β
ξk

= (1− η)Xk +
√

2ηβξk

= (1− η)

(
(1− η)Xk−1 +

√
2η

β
ξk−1

)
+
√

2ηβξk

= (1− η)k+1X0 +
k∑
`=0

√
2ηβ(1− η)`ξ`,

this implies EXk = (1− η)k+1x, and we also have the variance

E(Xk − EXk)
2 =

k∑
`=0

2η

β
(1− η)2` =

2

β(2− η)

[
1− (1− η)2(k+1)

]
.

It is well known that the continuous time SDE is the Ornstein-Uhlenbeck process, which has
the following solution (Kuo, 2006)

X(t) = X(0)e−t +

∫ t

0
e−(t−s)dW (s),

which is a Gaussian process. The mean and variance can also be computed as

EX(t) = xe−t,

E(X(t)− EX(t))2 =

∫ t

0
e−2(t−s)ds =

1

β
(1− e−2t).

In the actual plot of Figure 2 (b), we used parameters β = 20, η = 0.5. Additionally, the
stationary distribution of the discrete Langevin algorithm is found by a kernel density smoothing
for 10, 000 steps of simulation of Xk, and we smoothed using a normal density with parameter
σ = 0.1.

B.4 Plot for Figure 2 (a)

In the plot, we consider the forward Euler discretization of the ODE

dy

dt
= y2, y(0) = 1,

which gives the following update

yk+1 = yk + ηy2
k, y0 = 1.

The true solution is given by

y(t) =
1

1− t
,
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which the modified equation is given by

dv

dt
= v2 − ηv3 + η2 3

2
v4 + · · · , v(0) = 1.

To generate the plot in Figure 2 (a), we used a step size η = 1
6 for the forward Euler solver, and

for the modified equation we approximated the solution using forward Euler with step size η′ = 1
600

so it is sufficiently close to the true solution.
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