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Lecture 8: Marchenko-Pastur Law

Setup

id

e Data Matrix X € R™?, X;; ~ N(0,1) where n = number of data points and

d = data dimension

o )\ = N(1XTX), i largest eigenvalue

e Empirical spectral distribution (ESD) j := 1 S°7 4,

Stieltjes Transform

Definition 1. Stieltjes Transform

where z € C \ supp(p).

Then, as n,d — coand ¢ — v > 0, $ — ¢ satisfying

1 vy ) )
4+ 2= —"—— (Self-consistency equation
o) T e Y equation)

and p — p where

VO o~

2myx
with z € [A_,X\;] and Ay = (1 +,/7)% Note that \_ =0 <= v = 1 and when
v >1,d —nof \; = 0, contributing point mass (1 — %)50 in the limit.

p(z) =



Stochastic Calculus

e {B;};>0 Brownian Motion (B.M.)
e f:R—R
Definition 2. [t6 integral

/ f Bt dBt = hm Z f Btk ABtk
left hand rule

id d
i %) 4 Zk

where A = L, t,, = kA, and AB,, = B,,, — By, noting AB,, ~ N(0,
gives us “CLT scaling”.

-

Stochastic Differential Equations (SDEs)

Note: more accurately, stochastic integral equations.

Definition 3. Stochastic differential equation

t t
dXt = b(Xt)dt + O'(Xt)dBt - Xt - XO = / b(Xs)dS +/ O'(Xs)dBt
0 0

& J/ J/
~~

Riemann Ito

forb,o : R — R.

Heuristically, dB, - dB, = dt, since

N-1 72 T
d N—oo
f(By,)AB} = Z f(By,) Wk = / f(By)dt
k=0 ~ 0
“LLN scaling”

Note: This can be made more precise, but this suffices for our purpose.

It6’s Lemma (chain rule)

e In ODE
X, = b(Xy)
O f (Xy) = f'(X0) X,
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e InSDE
dX; = b(X,)dt + o(X:)dB;
GF(X) = FXIDX)E + F(X)o(X)dB, + 1 (X)X dr

Multivariate Form
e fARI=R
e h:R? - R?
* 0 = I, (for simplicity)

e A=Y1, 92 (Laplacian)

df (X;) = (Vf(Xe),b(Xy)) dt + (V f(Xy) dBt>+ Af(Xt)

Covariance Matrix

First, consider 3. = LXTX with Xj; YN (0,1). We generalize this to the time

dependent case by taking S(t) = LX ()T X (t) with X “B.M.. Let )\ : Rdxd SR

SPD(d)
We have
o = d A \/ nag.(n + | =44t Zd: N
“particle” A;(¢) N J=1,j#i P

vV
“Interaction”

Recall, p, = 13°0 6y, and ¢4(2) = [ Ldpi(a) = 1300 »w—- Whend,n — oo

with £ — v, we have

dX;i(t) = 0dBy + [(1 —7)+ 7/ %dm(y)] dt.



Now, back in the finite d, n case, we have (d notation is a bit confusing here)

d d d
~ = — (1-— - — | dt.
dpi(= dz:: ( —z) dz:: { N+y :Z Ai(t)Aj(t)]
When d,n — oo with % — 7, we have

dipy(z) = /(x:—lz)g [(1 —7) +7/£2—fydpt(y)} dpy()dt

With some algebraic steps, we get

Ope(z) = =0, [(1 = 7)ee(2) + y201(2)?]

which is a first order nonlinear PDE and may be solved by the method of character-

istics to obtain
z

4+ (y=Dt+ /(2 — (v + 1)t)2 — 4y12

and we may note that, at ¢ = 1, this solves

pi(z) =

. Y
o) T T 1T el

Inversion Formula

Using the Stieltjes inversion formula gives us

p(z) = lim Imgpl(x +ib) _ VO —2)(z—A)

b—04 m 2nyx

with )‘:I: = (1 + ﬁ)Q

Propagation of Chaos

We may observe that

=2 20 L)

Q.I*—‘

and
LM, ) (1) 3 pf% (Independent!)
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Asymptotic Equivalence

Definition 4. Asymptotic equivalence
We say sequences {a,} and {b,} are asymptotically equivalent, denoted a,, ~ by, if 7> — 1
as n — oo.

Proposition 1. In the context of ridge reqularization, with regularization strength X > 0,
we have

A A 1
Tr (2(2 + )\I)‘1> ~ Tr (2(2 + )—1> ,
where Y = IXTX and ¥ = 1.

This will be relevant for our later discussion of double descent.



