STAT 946 - Topics in Probability and Statistics: Mathematical
Foundations of Deep Learning
Lecture 7

Lucas Noritomi-Hartwig
University of Waterloo

September 24, 2025 from 16h00 to 17h20 in M3 3103

October 6th: Majid (Deep RL), Marty (MF Transformers) presenting articles.
October 20th: 7 ?

October 8th: Last day to decide on a topic and direction for a project.

Recall
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| Py, 28||? is a projection on the column space of ¢;, namely col (¢;), where ¢; is n x m.
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Aside:
n n
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i.e., finitely many random varibales contribute infinitesimally small amounts to the limit.
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where A ® B = [ag;bi;],; is the Hadamard product of A and B.
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Generalization

Something of which we have a completely new understanding since 2018-2019.

Classical view: bias-variance tradeoft, i.e., in order to perform better (have low risk), we must regularize our
model’s complexity.

What is risk? In classical theories, “risk” is defined in a very restrictive way.

No Free Lunch Theorem
Informally: If algorithm A can fit any data, then 3 a task (data distribution) on which A fails, i.e., there is
some fixed amount of risk under which A cannot output a model that performs better than the risk.

“Understanding Deep Learning Requires Rethinking Generalization” - Zhang et al (2016)
First plot: Training loss



September 24, 2025 STAT 946 - Math. Foundations for Deep Learning Lucas Noritomi-Hartwig

Second plot: Generalization error (Test - Training loss)

Belkin et al. (2018) “Double Descent”
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