
Stat 946 - Topics in Probability and Statistics: Mathematical

Foundations of Deep Learning Lecture 6

Instructor: Mufan Li, Scribe: Xiaoxi Luo

September 22, 2025

1 Review of NTK

Kαβ = K(xα, xβ) =
〈
∇θf(x

α; θ),∇θf(x
β ; θ)

〉
.

We can interpret it as a kernel. As n → ∞, there are two properties:

1. kθ
t

becomes a deterministic function of xα, xβ .

2. kθ
t

is constant in time (in gradient flow training).

These two things guarantees that (1) Neural networks converge exponentially, and (2) We can
interpret neural networks as linear method (see below).

Linearization

Discrete time update:
θk+1 = θk − η∇θL(θk).

By Taylor’s theorem:

f(xα; θt+1) = f(xα; θt) + ⟨∇θf(x
α; θt), θt+1 − θt⟩+

a function of 2 tensors︷ ︸︸ ︷
∇2

θf(x
α; θ∗) [θk+1 − θk]

⊗2

= f(xα; θt)− η
1

m

m∑
β=1

Kαβ(fβ − yβ)

+
β2

2m2

m∑
γ,β=1

(fα − yα)(fβ − yβ) ((∇fβ)⊤ · ∇2fα · ∇fγ)︸ ︷︷ ︸
O(n− 1

2 )→0

• That is to say, Taylor’s remaining term goes to zero when n → ∞. Only linear term remains,
and we characterize it with tangent kernel.

• f(xα; θ) is linear in θ. See the figure below.

• We are actually doing linear regression with features ∇θf . The gradient of f has two terms:
The first set of features are the hidden layers at initialization (random), same as GP features.

∇W1f
α =

1√
n
φ(W0x

α)⊤

∇W0
fα =

1

n
diag

(
φ′(W0x

α)
)
(xαW1)

⊤

1



θ

f

θk θk+1

∇θ
f
α

2 Extension to MLPs

Depth d (finite):

fd
θ (x,Θ) =

1√
n

1×n︷︸︸︷
Wd φ(

n×1︷︸︸︷
hd−1)

hα
ℓ+1 =

1√
n

n×n︷︸︸︷
Wℓ φ(

n×1︷︸︸︷
hα
ℓ−1), hα

1 =
1

√
n0

W0x
α

with

Θ = {Wℓ}dℓ=1
iid∼ N (0, 1), L(θ) =

1

2m

∑
β

(
fβ − yβ

)2
, ∂tθt = −η∇θL(θt)

Since η is a constant at present, we can safely ignore it.

kαβ(xα, xβ) =
〈
∇θf(x

α; θ),∇θf(x
β ; θ)

〉
=

d∑
ℓ=1

〈
∇Wℓ

f(xα; θ),∇Wℓ
f(xβ ; θ)

〉
(1)

How do we calculate the gradient of Wℓ? Consider an entry first:

∂fα

∂Wℓ,ij
=

n∑
k=1

∂fα

∂hℓ+1,k

∂hℓ+1,k

∂Wℓ,ij
.

Since
∂hℓ+1,k

∂Wℓ,ij
=

∂

∂Wij
(
1√
n

∑
k′

Wl,kk′φ(hα
lk′))

we get

∂fα

∂Wℓ,ij
=

n∑
k=1

n∑
k′=1

∂fα

∂hℓ+1,k

1√
n
δikδjk′φ(hα

ℓ,k′) =
1√
n

∂fα

∂hℓ+1,i
φ(hα

ℓ,j).

Back to Eq. (1),

〈
∇Wℓ

f(xα; θ),∇Wℓ
f(xβ ; θ)

〉
=

n∑
i,j=1

1

n

∂fα

∂hα
ℓ+1,i

∂fβ

∂hβ
ℓ+1,i

φ(hα
ℓ,j)φ(h

β
ℓ,j)

=
∑
i

∂fα

∂hℓ+1,i

∂fβ

∂hℓ+1,i︸ ︷︷ ︸
Nice if it is also a kernel!

Φl, GP kernel︷ ︸︸ ︷
1

n

¨
φ(hα

ℓ ), φ(h
β
ℓ )
∂

2



∂fα

∂hα
ℓ

=
∂fα

∂hα
ℓ+1

∂hα
ℓ+1

∂hα
ℓ

=
∂fα

∂hα
ℓ+1

Å
1√
n
Wl

∂

∂hα
ℓ

φ(hα
ℓ )

ã
=

1√
n
diag

(
φ′(hα

ℓ )
)
W⊤

ℓ

∂fα

∂hℓ+1
.

Note: diag(φ′(hα
ℓ )) only has elements if the indices match. We make the convention that

“neurons ∈ Θ(1)”.
Then we define “backward” (post-activation) neurons:

gαℓ =
√
n
∂fα

∂hℓ

Then the NTK can be written as

Kαβ =

d∑
ℓ=0

1

n
⟨gαℓ+1, g

β
ℓ+1⟩Φ

αβ
ℓ

If we define ⟨gαℓ+1, g
β
ℓ+1⟩ as G

αβ
ℓ+1, a backward covariance/kernel, then we could write NTK as

Kαβ =

d∑
i=0

Gαβ
ℓ+1Φ

αβ
ℓ

The recursion of gαl is given by

gαℓ =
1√
n
diag

(
ϕ′(hα

ℓ )
)
W⊤

ℓ gαℓ+1.

Define the backward “pre-activation”

zαℓ =
1√
n
W⊤

ℓ gαℓ+1 =
1√
n
W⊤

ℓ · 1√
n
diag(φ′(hα

ℓ+1))︸ ︷︷ ︸
Dα

ℓ+1

W⊤
ℓ+1 gαℓ+2 =

1√
n
W⊤

ℓ Dα
ℓ+1z

α
ℓ+1 (2)

The whole structure looks like

hℓ

hℓ+1 Wℓ

Wℓ−1

zℓ−1

zℓ

In the left way, the {hℓ} have the Markov property. It would be great if {zℓ} is also a Markov
chain! If we condition on hℓ, hℓ+1, · · · , we can remove all the red edges.

However, after conditioning on {hα
k}k,α, the random variables Wℓ and Wℓ−1 are no longer i.i.d.

N(0, 1)! To handle the new problem, we refer to the following lemma:

3



Lemma 1 (Gaussian Condition). Let W ∈ Rn×m with entries Wij
iid∼ N(0, 1). For a determin-

istic ϕ ∈ Rn×m, we have

W | σ(Wφ)
d
= WPφ + W̃P⊥

φ ,

where

• Pφ = φ(φ⊤φ)†φ⊤ is the projection onto the column space of φ (with † denoting the pseudo-
inverse),

• W̃ is an independent copy of W , also with W̃ij
iid∼ N(0, 1) entries.

Example Let

W = [g1, g2], ϕ =

ï
1
0

ò
, Wϕ = g1.

Then

W | σ(Wϕ)
d
=

ï
g1
0

ò
+

ï
0
g̃2

ò
,

where g̃2 is an independent copy of g2.
Define the filter as

Fz
ℓ+1 = σ({hα

k}k,α, {zαk }k≥ℓ+1,α)

We apply Lemma 1 on zαℓ , and have

zαℓ | F z
ℓ+1 =

1√
n
W⊤

ℓ Dα
ℓ+1z

α
ℓ+1 | F z

ℓ+1 =
1√
n
(Pφℓ

W⊤
ℓ + P⊥

φℓ
W̃⊤

ℓ )Dα
ℓ+1z

α
ℓ+1 | F z

ℓ+1

= Pφℓ
zαℓ + P⊥

φℓ
· 1√

n
W̃⊤

ℓ

gα
ℓ+1︷ ︸︸ ︷

Dα
ℓ+1z

α
ℓ+1︸ ︷︷ ︸

:=z̃α
ℓ |Fz

ℓ+1

| Fz
ℓ+1

The first term is due to recursion of zαℓ | Fz
ℓ+1 (Eq. 2). In the second term, z̃αℓ | Fz

ℓ+1 ∼ N (0, Gℓ+1⊗
In).

4


	Review of NTK
	Extension to MLPs

