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1 NTK for network with 1 Hidden Layer of width n

Recap: The network function f(· ; θ) is parameterized by the weights θ = { W0︸︷︷︸
n×n0

, W1︸︷︷︸
1×n

} where

Wl,ij are i.i.d. realizations of N(0, 1).

The network’s output fα for input xα︸︷︷︸
n0×1

is defined as follows:

fα = (1/
√
n) ·W1 · ψ(hα1 )

where hα1︸︷︷︸
n×1

= W0 · xα refers to the corresponding hidden layer for input xα and ψ is an

activation function applied to each component in the column input individually.

The network function f is trained on a data-set, D, of size m:

D = {(xα, yα)}mα=1

and the loss observed by the network f as a function of the parameters θ is specified below:

L(θ) = (1/(2 ·m)) · Σm
α=1(fα − yα)2

An application of chain rule allows us to model the gradient flow (i.e. ∂t︸︷︷︸
∂/∂t=d/dt

θ(t)) using

the following differential equation:

∂tθ(t) = −∇θL(θ(t))
= −(1/m) · Σm

α=1(fα − yα) · ∇θf
α (1)
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We can write out the change in the residual, ∂t(fα − yα), for input xα as follows:

∂t(fα − yα) = ∂tf
α

= ⟨∇θf
α, ∂tθ(t)⟩

= −(1/m) · Σm
β=1 ⟨∇θf

α,∇θf
β⟩︸ ︷︷ ︸

Kn
t (xα,xβ)

·(fβ − yβ) (2)

The second equality is another application of the chain-rule. The last equality is obtained
by substituting thetat into ∂tθ(t). The random tangent Kernel, Kn

t (· ; ·), which is implicitly
parameterized by θ is also referred to as the NTK. Note that ∂t(fα − yα) can be viewed as
a mixture of the rest of the residuals (i.e. {fβ − yβ}β=1,··· ,m).

Jacot et al. (2020) prove the following:

Theorem 1. In the infinite-width limit (i.e n → ∞), by the law of large numbers (LLN), the
random tangent kernel, Kn

t , tends to a deterministic kernel, K = [K(xα, xβ)]mα,β=1, which
stays constant during the entire training process.

Now we can apply Theorem 1 and rewrite the change in the residuals, Eq. (2), using the
following linear DE:

∂t(f − y︸ ︷︷ ︸
m×1

) = −(1/m) · K︸︷︷︸
m×m

·(f − y) (3)

We can view (1/m) · K as the pre-conditioner on the co-ordinate (f − y).

The differential equation expressed as Eq. (3) has the following solution:

(f − y) = exp{−(1/m) · K · t} · (f(θ(0)) − y) (4)

where the exponential operation on a matrix A refers to:

exp{A} = I +A+A2/2! +A3/3! + · · ·

Let’s generalize the loss function on our training set of size m:

L∗(θ) = (1/m) · Σm
α=1l(fα, xα)

Now we can model the evolution of the generalized loss function using the following differ-
ential equation:

∂tL∗(θ(t)) = (1/m) · Σm
α=1∂fα l(fα, yα) · ∂tfα

= (−1/m2) · Σm
α=1∂fα l(fα, yα) · Σm

β=1K(xα, yβ) · ∂fβ l(fβ, yβ)
= (−1/m2) · (∂xl(f, y))T · K · ∂xl(f, y) (5)

where ∂xl(f, y) is an m × 1 column-vector whose ith entry refers to ∂f i l(f i, yi) and the
second equality is an exercise for the reader.
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Let’s revisit our original loss function L(θ) = (1/(2 · m)) · ||f − y||2. We can apply similar
logic as above to arrive at the following expression:

∂tL(θ(t)) = −(1/m2) · (f − y)T · K · (f − y)

Now we state the following lemma:

Lemma 2. Let M ∈ Rm×m be a symmetric and PSD matrix. Let λ∗(M) refer to the
minimum eigenvalue of matrix M . For any µ ∈ Rm, λ∗(M) · ||u||2 ≤ uT ·M · u.

Proof.

ut ·M · u = uT · P ·D · P T · u
≥ λ∗(M) · uT · P · P T · u
= λ∗(M) · ||u||2

The first inequality makes use of the non-negativity of the eigenvalues of the matrix and
the last equality makes use of the orthogonal diagonalizability of symmetric matrices.

Now we can apply Lemma 2 with respect to our PSD kernel matrix K to derive the following
differential inequality:

∂tL(θ(t)) ≤ −(λ∗(K))/m2) · ||f − y||2

= −(λ∗(K))/m2) · 2 ·m · L(θ(t))
= −2 · (λ∗(K)/m) · L(θ(t))
≤ −(1/2) · (λ∗(K)/m) · L(θ(t))

We apply Grönwall’s Inequality, to get the following solution to the above differential in-
equality:

L(θ(t)) ≤ exp{−λ∗(K) · t
2 ·m

} · L(θ(0)) (6)

A consequence of Eq. (6) is that if λ∗(K) > 0, then NN training should converge! Note that
we can show that λ∗(K) > 0 using RMT.

Exercises

Show the following chain of equalities:
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1.

Kn
t (xα, xβ) = (1/n) · ⟨ψ(hα1 ), ψ(hβ1 )⟩︸ ︷︷ ︸

GP Kernel ψ(xα,xβ)

+ (1/n) · ⟨diag(ψ′(hα1 )︸ ︷︷ ︸
n×n

) · (xα ·W1︸ ︷︷ ︸
n×n0

)T , diag(ψ′(hβ1 )) · (xβ ·W1)T ⟩

2.

∂t(Kn
t (xα, xβ)) = −(1/m) · Σm

γ=1(fα − yα)·
[(∇θ(fβ))T · ∇2

θ(fα) · ∇θ(fγ) + (∇θ(fα))T · ∇2
θ(fβ) · ∇θ(fγ)]

3.

(∇θ(fβ))T · ∇2
θ(fα) · ∇θ(fγ) = (⟨xα, xβ⟩/

√
n) · (1/n) · Σn

i=1W1,i · ψ(hβ1,i) · ψ′(hα1,i) · ψ′(hγ1,i)

+ (⟨xα, xβ⟩/
√
n) · (1/n) · Σn

i=1W1,i · ψ(hγ1,i) · ψ′(hα1,i) · ψ′(hβ1,i)

+ (⟨xα, xβ⟩ · ⟨xα, xβ⟩/
√
n) · (1/n) · Σn

i=1W
3
1,i · ψ′(hβi ) · ψ′′(hαi ) · ψ′(hγi )︸ ︷︷ ︸

O(1)

A consequence of the above equalities is that ∂t(Kn
t (xα, xβ)) = O(1/

√
n) → 0. Hence, the

limiting kernel Kt is also stationary (i.e. Kt = K) in the infinite-width limit.
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