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1 NTK for network with 1 Hidden Layer of width n

Recap: The network function f(-; 0) is parameterized by the weights @ = { Wy , W1 } where
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Wyi; are i.i.d. realizations of N(0,1).
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The network’s output f¢ for input is defined as follows:

where h{ = Wj - z® refers to the corresponding hidden layer for input z® and % is an

nx1
activation function applied to each component in the column input individually.

The network function f is trained on a data-set, D, of size m:
D ={(z%,y") o=
and the loss observed by the network f as a function of the parameters 6 is specified below:

L(0) = (1/(2-m)) - gLy (f* — y*)?

An application of chain rule allows us to model the gradient flow (i.e. 9y  6(t)) using
~~
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the following differential equation:
0:0(t) = —VoL(6(t))
= —(1/m) - X0, (f* —y®) - Vo f* (1)



We can write out the change in the residual, 0;(f* — y“), for input z“ as follows:

OW(f* —y®) =0 f*
= (Vo f,0,0(t))
= —(1/m) - Xy (Vof*, Vo ) (f7 — o) (2)
Kr(ze,zP)
The second equality is another application of the chain-rule. The last equality is obtained
by substituting ;heta; into 9,0(t). The random tangent Kernel, K*(- ; -), which is implicitly

parameterized by 6 is also referred to as the NTK. Note that 0,(f* — y*) can be viewed as
a mixture of the rest of the residuals (i.e. {f® —y%}s=1.. m).

Jacot et al. (2020) prove the following:

Theorem 1. In the infinite-width limit (i.e n — 00), by the law of large numbers (LLN), the
random tangent kernel, K{*, tends to a deterministic kernel, K = [K(x“,xﬁ)]zﬁzl, which
stays constant during the entire training process.

Now we can apply Theorem 1 and rewrite the change in the residuals, Eq. (2), using the
following linear DE:

o(f —y) = —(/m)- L (f =) ®
mx1 mxXm

We can view (1/m) - K as the pre-conditioner on the co-ordinate (f — y).

The differential equation expressed as Eq. (3) has the following solution:

(f —y) = exp{—=(1/m) - K-t} - (f(6(0)) — y) (4)
where the exponential operation on a matrix A refers to:

exp{A} =T+ A+ A?/2! + A%/3! 4 ...

Let’s generalize the loss function on our training set of size m:

L3(0) = (1/m) - B L(f*, =)

Now we can model the evolution of the generalized loss function using the following differ-
ential equation:

OL(0(t)) = (1/m) - B0, Opel(f*, y%) - Ouf®

(=1/m?) - S0 0pal(f*,y*) - S K (2, 47) - 0l (f7,4)

(=1/m?) - (Dul(f,9))" - K- 0:l(f,y) (5)
where 9,1(f,y) is an m x 1 column-vector whose " entry refers to 8fil(fi7yi) and the
second equality is an exercise for the reader.



Let’s revisit our original loss function £(0) = (1/(2-m)) - ||f — y||>. We can apply similar
logic as above to arrive at the following expression:

OLO(1) = —(1/m?) - (f —y)T - K- (f ~v)

Now we state the following lemma:

Lemma 2. Let M € R™*™ be a symmetric and PSD matriz. Let \*(M) refer to the
minimum eigenvalue of matriz M. For any pu € R™, X*(M) - ||u||* < uT - M - u.

Proof.

wt-M-u=u"-P-D-Pl.q
>N (M) -ul PPy

= \(M) - [Jul
O

The first inequality makes use of the non-negativity of the eigenvalues of the matrix and
the last equality makes use of the orthogonal diagonalizability of symmetric matrices.

Now we can apply Lemma 2 with respect to our PSD kernel matrix K to derive the following
differential inequality:

QL(O(1)) < —(N*(K))/m?) - |If =yl
= —(\"(K))/m?) - 2-m- L(6())
= —2-(A"(K)/m) - L(6(t))
< —=(1/2) - (A(K)/m) - L(6(1))

We apply Gronwall’s Inequality, to get the following solution to the above differential in-
equality:

A(K) -t :
S £(0(0) (6

-m

L(0(t)) < exp{—

A consequence of Eq. (6) is that if \*(IC) > 0, then NN training should converge! Note that
we can show that \*(IC) > 0 using RMT.

Exercises

Show the following chain of equalities:



K (2, 27) = (1/n) - (Y(h), ¥ (hT))
GP Kernel 9 (z%,z8)
+(1/n) - (diag(y)' (h$)) - (za - Wi)T, diag(e)' (A))) - (25 - W1)T)
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O (K (x®,a%)) = —(1/m) - S, (f* = y*)-
[(Vo(fP)" - V() - Vo) + (Va(f*NT - V5 (f7) - Vo(f)]

/

(VolfPNT - V3(£) - Va(f?) = ({2*,2%) /v/n) - (1/n) - S0 W - (R ,) -9 (RS) - o' (R ;)
(@, 2%) /) - (1/n) - Sy W - (k] ) -0 (hS,) -4 (b))
By (z®,aP) [/n) - (1n) - SR W (B]) 0" (BE) - (h])
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)
e
)

A consequence of the above equalities is that 9;(K}(xz®,2%)) = O(1/\/n) — 0. Hence, the
limiting kernel K is also stationary (i.e. K; = K) in the infinite-width limit.
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