STAT 946 - Topics in Probability and Statistics: Mathematical Foundations of Deep Learning Lecture 4

Lucas Noritomi-Hartwig University of Waterloo

September 15, 2025 from 16h00 to 17h20 in M3 3103

1 Extension to Deep Networks

Define $f(X^{\alpha}; \theta) = \frac{1}{\sqrt{n}} \underbrace{W_d}_{1 \times n} \varphi \left(\underbrace{h_d^{\alpha}}_{n \times 1}\right)$ where $\alpha = 1, \dots, m$ is the the data index.

$$h_{l+1}^{\alpha} = \frac{1}{\sqrt{n}} \underbrace{W_l}_{n \times n} \varphi \left(\underbrace{h_l^{\alpha}}_{n \times 1}\right)$$
$$h_1^{\alpha} = \frac{1}{\sqrt{n_0}} \underbrace{W_0}_{n \times n_0} \underbrace{x^{\alpha}}_{n_0 \times 1}$$

 $W \in \mathbb{R}^{n \times n}, W_{i,j} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1), u, v \in \mathbb{R}^n.$

$$\begin{bmatrix} Wu \\ Wv \end{bmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} |u|^2 I_n & \langle u, v \rangle I_n \\ \langle u, v \rangle I_n & |v|^2 I_n \end{bmatrix} = \begin{bmatrix} |u|^2 & \langle u, v \rangle \\ \langle u, v \rangle & |v|^2 \end{bmatrix} \otimes I_n \right)$$

where $A \otimes B = [a_{i,j}B]_{i,j}$.

Let $u^{\alpha} \in \mathbb{R}^n$, $\alpha \in [1:m]$

$$\left[\underbrace{W}_{nm\times 1} u^{\alpha}\right]_{\alpha=1}^{m} \sim \mathcal{N}\left(0, \left[\langle u^{\alpha}, u^{\beta} \rangle\right]_{\alpha, \beta=1}^{m} \otimes I_{n}\right)$$
$$h_{l+1}^{\alpha} = \frac{1}{\sqrt{n}} W_{l} \varphi\left(h_{l}^{\alpha}\right)$$

Condition on $\mathcal{F}_l = \sigma\left(\{h_k^{\alpha}\}_{\alpha \in [1:m], k \leq l}\right) \leftarrow \sigma$ -algebra.

$$[h_{l+1}^{\alpha}]_{\alpha=1}^{m} | \mathcal{F}_{l} \sim \mathcal{N} \left(0, \underbrace{\left[\frac{1}{n} \left\langle \varphi \left(h_{l} \right)^{\alpha}, \varphi \left(h_{l}^{\beta} \right) \right\rangle \right]_{\alpha, \beta}}_{\Phi_{l} \in \mathbb{R}^{m \times m}} \otimes I_{n} \right), \text{ where } u^{\alpha} = \frac{1}{\sqrt{n}} \varphi \left(h_{l}^{\alpha} \right)$$

• To characterize neural networks at initialization,

we only need Φ_l .

• Φ_{l+1} is a deterministic function of $\left[h_{l+1}^{\alpha}\right]_{\alpha=1}^{m}$, i.e.,

$$\Phi_{l+1} \stackrel{\text{det.}}{\longleftarrow} hl + 1 | \mathcal{F}_l \longleftarrow \Phi_l
\Phi_{l+1} \longleftarrow \Phi_l
\Phi_{l+1} | \mathcal{F}_l \stackrel{d}{=} \Phi_{l+1} | \sigma (\Phi_l)$$
(Weak Markov property)

Define the function $f_n: \Phi_l \mapsto \Phi_{l+1}$ (random map), and $f = \lim_{n \to \infty} f_n$ (deterministic).

$$\Phi_{l+1}^{\alpha\beta}|\mathcal{F}_{l} = \frac{1}{n} \left\langle \varphi\left(h_{l+1}^{\alpha}\right), \, \varphi\left(h_{l+1}^{\beta}\right) \right\rangle |\mathcal{F}_{l}$$

$$= \frac{1}{n} \sum_{j=1}^{n} \varphi\left(h_{l+1,j}^{\alpha}\right) \varphi\left(h_{l+1,j}^{\beta}\right) |\mathcal{F}_{l}$$

$$\longrightarrow \mathbb{E}\left[\varphi\left(h_{l+1,j}^{\alpha}\right) \varphi\left(h_{l+1,j}^{\beta}\right) |\mathcal{F}_{l}\right]$$

Adding 0...

$$\begin{split} \Phi_{l+1}^{\alpha\beta}|\mathcal{F}_{l} &= f\left(\Phi_{l}\right)^{\alpha\beta} + \frac{1}{n}\sum_{j=1}^{n}\underbrace{\left(\varphi\left(h_{l+1,\,j}^{\alpha}\right)\varphi\left(h_{l+1,\,j}^{\beta}\right) - f\left(\Phi_{l}\right)^{\alpha\beta}\right)}_{\text{zero mean iid}}|\mathcal{F}_{l}| \\ &= f\left(\Phi_{l}\right)^{\alpha\beta} + \underbrace{\frac{1}{\sqrt{n}}}_{\text{extra factor}}\underbrace{\frac{1}{\sqrt{n}}\sum_{j=1}^{n}Z_{j}}_{\text{extra factor}}, \quad \text{where } \forall j \in [1:\,n],\, Z_{j} \overset{\text{iid}}{\sim} \mathcal{N}\left(0,\,1\right) \end{split}$$

In context $n \to \infty$, $q_n \in \Theta(p(n))$ if $\exists c, C > 0$ such that $cp(n) \le q_n \le Cp(n)$.

This implies that

$$\Phi_{l+1} = f(\Phi_l) + \underbrace{\Theta\left(\frac{1}{\sqrt{n}}\right)}_{\to 0}$$

Thus, in the limit, as $n \to \infty$, Φ_l is deterministic.

Theorem (NNGP)

• Assume ϕ is "nice" (polynomial tail)

•
$$n \to \infty$$
, $\Phi_l \stackrel{P}{\longrightarrow} f^{\circ l} (\Phi_0)$

Sequential limits \neq joint limits (joint is a stronger case than sequential).

$$\left(1 + \frac{1}{n}\right)^d = \begin{cases} 1, & n \to \infty \text{ first} \\ \infty, & d \to \infty \text{ first} \\ e^{\frac{d}{n}}, & \frac{d}{n} \to \text{ const.} \end{cases}$$

Order of limits matter.

2 Neural Tangent Kernel (NTK)

(If you come up with a name as good as this, you don't have to do all the theory. The name will stick and people will cite your work.)

 \sim Fall 2018, \sim five articles that studied wide neural network training.

- Three of the five articles: Du et al., Allen-Zhu et al., Zou et al. showed that neural network training actually converges.
- Lee et al. (2018) (same group as the NNGP article) showed that the neural network training is <u>linear</u>.
- (Arthur) Jacot et al. (2018) coined the term NTK (wrote this as a PhD student).

Neural network: $f(x^{\alpha}; \theta_k)$, where k is the training time index.

Define the loss function:

$$\mathcal{L}(\theta) = \frac{1}{2m} \sum_{\alpha=1}^{m} (f(x^{\alpha}; \theta) - y^{\alpha})^{2}$$

$$\theta_{k+1} = \theta_{k} - \eta \nabla \mathcal{L}(\theta_{k}) \qquad (\eta > 0)$$

Training:

$$f(x^{\alpha}; \theta_{k+1}) = f(x^{\alpha}; \theta_k) + \langle \nabla_{\theta} f(x^{\alpha}; \theta_k), \theta_{k+1} - \theta_k \rangle + \mathcal{O}\left(\frac{1}{\sqrt{n}}\right),$$

i.e., f is a linear function in terms of θ (not ideal).