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1 Neural Network Gaussian Process (NNGP)

� Neal (1995)

� One hidden layer at initialization.

For θ = {W1,W0} and Wl,ij ∼ N(0, 1).

f(x; θ)
↓

input

=
1√
n
W1
↓

1×n

ϕ

 W0
↓

n×n0

x
↓

n0×1


Alternatively, we can write

f(x; θ) =
1√
n

n∑
i=1

W1,iϕ (⟨W0,i·, x⟩)︸ ︷︷ ︸
iid with mean 0,

∆
=Zi

Where W0,i· is the ith row of W0.

Figure 1: Example of a neural network with n = 3

Recall that for {X}n with mean 0 and variance σ2, 1√
n

∑
Xi

d→ N(0, σ2) as n → ∞. Hence we
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have

σ2 =E
[
Z2
i

]
=E

[
(W1,iϕ (⟨W0,i·, x⟩))2

]
=E

[
W 2

1,i

]
E
[
ϕ (⟨W0,i·, x⟩)2

]
=1 · E

[
ϕ (⟨W0,i·, x⟩)2

]
=E

[
ϕ (⟨W0,i·, x⟩)2

]
Note that if ϕ(x) = max(x, 0), then there is closed form formulae (Cho and Saul (2007)). Therefore,[

f(x1; θ)
f(x2; θ)

]
d→ N

(
0,

[
σ(x1)

2 ?
? σ(x2)2

])

Exercise 1.1. Show all linear combinations a1f(x
1; θ) + a2f(x

2; θ)
d→ N(· · · ).

To find the covariance,

E
[
Zi(x

1)Zi(x
2)
]
=1× E

[
ϕ
(
⟨W0,i·, x

1⟩
)
ϕ
(
⟨W0,i·, x

2⟩
)]

∆
=Φ(x1, x2)

Definition 1.1 (Gaussian Process). A random funtion f : Rn0 → R is a Gaussian Process (GP)
with mean m : Rn0 → R, covariate kernel Φ : Rn0 × Rn0 → R if

1. Φ is symmetric positive semi-definite.

2.

[f(xα)]mα=1 ∼ N

(
[m(xα)]mα=1 ,

[
Φ(xα, xβ)

]m
α,β=1

)
Theorem 1.1 (Neal, 1995). Assume “ϕ is nice”. As n → ∞, the nerual network defined above
f(·; θ) : Rn0 → R, we have

f(·; θ) d→ GP(0,Φ)

For f ∈ C(Rn0).

Remark 1.1. There exists sequence {fn}∞n=1 ∈ CN and fn → f∗ but f∗ ̸∈ C. For example, let

fn(x) = max(0,min(1, nx))

Which

lim
n→∞

fn =

{
1, x > 0

0, x ≤ 0

Definition 1.2 (Stochastic equicontinuity (equivalent to tightness in C)). A function f is stochastic
equicontinuous if ∃α, β, C > 0 : ∀x1, x2 ∈ Rn0

E
∣∣fn(x1; θ)− fn(x

2; θ)
∣∣α ≤ C|x1, x2|1+β, ∀n ≥ 1

2



Figure 2: Plot of fn for n = 1, 2, 3, 4, 5

Exercise 1.2. Show if |ϕ(u)− ϕ(v)| ≤ C|u− v|γ for γ > 1
2 then stochastic equicontinuity of ϕ with

β = 2γ − 1.

Remark 1.2.

� GP (0,Φ) is a “prior”.

� Infinite width network is characterized by one function Φ.

� Neal: “... it may be possible to implement Bayesian inference ... without any for an actual
network.”

Depth d > 1 (finite). (Lee et al. 2017)

f(xα; θ) =
1√
n
Wd
↓

1×n

ϕ(hαd
↓

n×1

)) (MLP)

hαl+1 =
1√
n
Wl
↓

n×n

ϕ(hαl
↓

n×1

))

hα1 =
1

√
n0

W0
↓

n×n0

ϕ( xα
↓

n0×1

))

Alternatively,

f(xα; θ) =
1√
n

n∑
i=1

Wd,i
↓

mean 0, iid

ϕ( hαd,i
↓

distribution changes with n

)

We would like to study
1√
n

∑
i

xi − µn

σn
→?

However, this requires xi
iid∼ Pn. One approach is call sequential limit by setting n1 → ∞, n2 → ∞

etc.
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Figure 3: Example of a neural network with two hidden layers

2 Properties fo Gaussians

� Let
g
↓

n×1

∼ N( µ
↓

1×n

, Σ
↓

n×n

)

And A ∈ Rm×n. Then
Ag ∼ N(Aµ,AΣAT )

� Let g ∼ N(0, In) and u, v ∈ Rn. Then[
⟨g, u⟩
⟨g, v⟩

]
∼ N

(
0,

[
|u|2 ⟨u, v⟩
⟨u, v⟩ |v|2

])

� Let W ∈ Rn×n,Wij
iid∼ N(0, 1) and u, v ∈ Rn. Then[

Wu
Wv

]
∼ N(0,Φ)

Where

Φ =



|u|2 ⟨u, v⟩
. . .

. . .

|u|2 ⟨u, v⟩
⟨u, v⟩ |v|2

. . .
. . .

⟨u, v⟩ |v|2


=

[
|u|2In ⟨u, v⟩In
⟨u, v⟩In |v|2In

]
=

[
|u|2 ⟨u, v⟩
⟨u, v⟩ |v|2

]
⊗ In

The entries of the covariance matrix can be obtained by

E⟨Wi, u⟩⟨Wj , u⟩ = |u|2δij

E⟨Wi, u⟩⟨Wj , v⟩ = ⟨u, v⟩δij
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Definition 2.1 (Kronecker Product). Let A = [aij ]ij, then

A⊗B = [aijB]ij =

a11B a12B · · ·
a21 a22B · · ·
...

...
. . .


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