STAT 946:

Lecture 11: Feature Learning
October 21, 2025 e Scribed by: Edward Chang

Contents

(1 Feature Learning |
[1.1 High-level points|
(.2 Recall: 1-layer network (NTK scaling)
[1.3 Loss and training| L e

[2 Scaling Tweaks |
2.1 Naive modificationl e
2.2 Compromise: scale down the output|,
2.3 Mean-field parameterization| Lo Lo L Lo
2.4 Comparison| e e e

B_Mean-Field ODEI

[3.1 Network as an integral against an empirical measure|
[3.2 Gradient flow (finite width) oo oL
3.3 Propagation of chaos|

4 Mean-Field PDE
4.1 Test functions and weak derivativesl.

1 Feature Learning

1.1 High-level points

e Non-kernel learning.

e Non-linear regime (beyond fixed NTK).

1.2 Recall: 1-layer network (NTK scaling)

We consider a single-hidden-layer network under NTK scaling

1
f(z;0) = —= Wy ¢(Woz), z e R™, Wy e R W, € RI*™,
mn

vn

with width m and elementwise nonlinearity ¢.

1.3 Loss and training
Given data {(z,y*)}?_,, use the squared loss

L(o) = ﬁ (f(z%:0) —y*)°.
=1

A gradient step with constant Learning Rate n > 0 is
Okt1 = Ok — nVL(0).

1.4 Hidden features
Write the hidden features at step k as

he(0) = Woa® € R™.

1.5 Feature dynamics

For a training point 2", define
AR = h0) — D (dy).

A gradient step on Wy yields a change of the form

N
Ah® = — m7\7/ﬁ B=1 (f7 = o) (2*,27) W] ®¢/(h”),

We note that as n — oo,
n,m, fﬁa yﬁa xa7 3757 Wl, ¢,(hﬁ) = 0(1)
hence,

s = ()

Now, consider back to NTK. The (discrete) flow can be written with the NTK:

Afe = TEO(f —y) = 0)

But we need Ah® = O(1) instead of O(n~1/?) for NTK to evolve.

2 Scaling Tweaks

2.1 Naive modification

Set the learning rate to
n = novn.

Then
AR* = 0O(1), Af*=0O(y/n) (diverges).

Remark: for cross-entropy loss this can still work (as noted in class).

2.2 Compromise: scale down the output

Use)
f(z,0) = - Wi ¢(Woz).

Under this scaling,
sit=o(), ar=ofs),

so changes are controlled (cf. the original where ARF = O(1) but Af¥ = O(y/n)).

2.3 Mean-field parameterization
Pre-factor is 1/n; choose the learning rate
n = Ton,
which accelerates the hidden layer and escapes the strict kernel regime:

ARF =0(1), AfF=0(1).

2.4 Comparison

Prefactor LR Init sd
NTK (W1) 1/ym (1) 1(1/v/m) 1(1/vn)
Mean field 1/n n 1

In bracket is what people use in practice.

Remarks
e “ABC reparameterization”

e NTK linearized dynamics:
n
Af = = TE(f -y,

which stays kernel-like unless features move. In the mean-field scaling, the state space dy-

namics are genuinely parameter-driven (nonlinear) rather than purely kernel.

e Full-parameter update: 01 = 0 — nVL(0), vs. NTK linearized in function space f (with

neurons summarized via h, g [(placeholders to match board notation)]).

3 Mean-Field ODE

3.1 Network as an integral against an empirical measure

f(x; 9) = :LZ’U)M (b((wg,i,m)) = /u(<w,x>)dp(n)(w,1i),

where the empirical measure on parameter space is

3.2 Gradient flow (finite width)
Denote the population risk L(#). Gradient flow is

d

—0(t) = 00(t) = —nVL(0(1)).

At the particle level, this induces ODEs for each (wq,;,w1,) (indices suppressed for clarity):

Ouwni == 3" (£7(0) — o) dl o 2%),
B=1

duwo; = — 3 (F(1) ~ o) W (w,a)) o
B=1

(n)

evolves by transporting each particle according to a

£) = Wo:(t) ,p™),

this is called mean-field ODE (McKean-Vlason).

Equivalently, the empirical measure p;
vector field

3.3 Propagation of chaos

As n — oo,

Pin) = Dt L(0:(t)) = pr,

(n)

where p; mean field measure, p; * all particles, L(6;(t)) contains one particle. This is quite
surprising.
Stronger Notation:

for each fixed k: L(61(t),...,0k(t)) = pP% (asymptotic k-particle independence).

A quantitative bound (for a suitable metric, e.g. Wasserstein-2) takes the form
1
Ws (ﬁ(el(t), e Gk(t))7 p?k> S ﬁec(t,no)‘

4 Mean-Field PDE

4.1 Test functions and weak derivatives
1. We generally cannot differentiate pgn), dp(t) .

2. The standard trick is to use a test function ¢ € C°(R™*1!) (smooth with compact sup-
port).

Informally, let’s pretend the following works. (weak derivative)
/Q(O)Vep§ /Veq ypy™ ()

n

0 [(@) (@6) = 3 (Vaal6s(0). 90:(6) = [(Voa(6). b0, i) ") (a0).

=1

_ / Voq(0)b(6, p™)dpl™

Now consider,

Further, imagine this works:
[(50a), 5010 7 @0) "2 [4(0) [- aivlv017) o1 0))]

~ [0l @i0
And this is valid for any ¢. Hence pgn) is a weak solution of the continuity/transport PDE.
We define the first order non-linear ” Transport Equation”:

Orpr = —diV(b(‘9> pt) Pt),

po=py.

(11)

This is a first-order, nonlinear transport equation (the mean-field PDE).

References:

Mei, Montanari, & Nguyen (2018).
Chizat & Bach (2018).

Nitanda & Suzuki (2017).
Rotskoff, Vanden-Eijnden (2018).

otk W b

Sirignano & Spiliopoulos (2018).

	Feature Learning
	High-level points
	Recall: 1-layer network (NTK scaling)
	Loss and training
	Hidden features
	Feature dynamics

	Scaling Tweaks
	Naive modification
	Compromise: scale down the output
	Mean-field parameterization
	Comparison

	Mean-Field ODE
	Network as an integral against an empirical measure
	Gradient flow (finite width)
	Propagation of chaos

	Mean-Field PDE
	Test functions and weak derivatives

