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High Dimensional Linear Regression

Recap: Setup and Underparametrized Regime

From Bach [2024] we have the following model

Yi = z;l'e* té (1)

where z; ~ N'(0,1) and ¢ ~ N(0,02).

In vector form Equation [I| can be rewritten

= X 6, 2
y = +_E_ (2)
nx1 nxd dx1 nx1

We are doing regression using random projections, that is

g =X S 70, Sij ~N(0,1)

nx1 nxd dXm mx1
6 = Sn (3)
7 = lim arg min{|ly — XS0 + A|n|*}

The risk R(@) = [|§ — 6. can be decomposed into bias and variance components by taking the
expectation over € as follows:

Ec[R(9)] = Ec[[|6 — 6.
=E[|S(STXXTS +nA)1STX Ty —06,]?
M

E[| My — 6.7

Ec[|M(X6. + ¢) — 6,/ )
Ec[|(MX — 1)6. + Me|]’

|(MX — D)6, + Ec[| Me]?)

R (6) + B[RO (6)]



By taking the limit d,n,m — oo such that % — v and 7t — 0 we showed that in the under-
parametrized regime (§ < 1,7 < 1) we get

2
(var) (9\] ~ o°d
E[RO)(6)] ~ - (5)
In addition one can show that
ias) (4 — 36417
(bias) 0) ~ g
RO (6) ~ 1= (6)

On this lecture we will see the derivation of the limit in the overparametrized case.

Overparametrized Regime

Recall that & = XX T and Te(5(S + M) ™) ~ Te(S(E + s(A)1) "), where #(X) — 555 When
taking A — 0 we get

k(M) = {077 <1 (underparametrized) -

v—1,7>1 (overparametrized)

This means that in the overparametrized regime, even when we have no regularization (A — 0) we
have asymptotic regularization (k(A) =~y —1 > 0).

Now let us derive the limit of the bias component of the risk in the overparametrized regime. Taking
the expectation of the term defined in Equation [4] we get

Ee[||Me|?] = 0% Tr(M T M)

2 . ) . (8)
= % Tr[STS(STES + M) LSEST(STSS + AI) Y
The trace expression surely looks unwieldy, but we can make use of the following result:
Result (Proposition 2, Bach 2024)).
T[AZ(252" —nzD) ' ZBZT (252 —nzl)" 2] ~ Te[A(S + 551 'B(E + 557
1 1
A+ D2 Te[B(E + L) 72
Fore AT T BE s D i)
(9)




Using this result (taking Z — ST,% = S,n = m,z » —A\,A = I, B = 3,5(\) = &()),dfs —
dfy wrt X), we have the following asymptotic equivalence:

E[RO™) ()] ~ o Te[S(E + &A1) 72 + R > - >
¢ n n(m — dfa(7(\))

To simplify this formula we will use the following results:

e A= 0 RN =5 0

o dfy(R(N) = Tr[22(ET)? =n
e Using the push-through identity{] we have S(S+&1)2 = nX (XX T +nil)2X — nX (XX T)72X
e Using the Woodbury matrix identity E| we have
EN2E+RND 2 =T - XT(XXT +ne(\))"HX)?
S (—- XT(xx")1x)?

projection matrix Px (11)
= (I - Px)*
=I-Px

Putting it all together we have

2

E[R™)(6)] ~ o2 Tr[X (XX T)2X] + ——— Te[I — Px] Te[(X X 7)Y
=2 Tr[(XX )Y+ m02 ~Tr[l — Px] Te[(XX 7)™
n— 00 z—0

Note that Tr[(XX " — nzl)~!] = ¢(z)
because rank(Px) = n. Thus

o(z) —— 5(10) = ﬁ Also, Tr[I — Px] = d —n,

0.2

Ec[RY™)(0)] ~ o Tr[(XX )71 + e[l — Px] Te[(X X )Y

m-—-n

(13)

'Push-through identity: X (XX 4+ xl)™! = (XX + rI)71X
Woodbury matrix identity: x(X X +xl) ' =T - X" (XX +kl)7'X



Therefore we can see that E[R() ()] decreases as & or 7 increases.

The result for the bias component of the risk is the following (we will not prove it):

ias 1 0
Rvias) (1 - 7) mIIB*IV (14)

Thus R(™2%) increases with v and decreases with 4.

Double Descent

Combining the results from the previous lecture (underparametrized regime) and today’s results
(overparametrized regime), we illustrate the double descent phenomenon in Figure

EG[R(Vdr)(éM 'S ‘
R(bias)(é) 3
| (1-1) 562
1 o=n
Underparametrized Overparametrized
Figure 1: Illustration of the double descent phenomenon.
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