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High Dimensional Linear Regression

Recap: Setup and Underparametrized Regime

From Bach 2024 we have the following model

yi = x⊤i θ∗ + ϵi (1)

where xi ∼ N (0, 1) and ϵi ∼ N (0, σ2).

In vector form Equation 1 can be rewritten

y︸︷︷︸
n×1

= X︸︷︷︸
n×d

θ∗︸︷︷︸
d×1

+ ϵ︸︷︷︸
n×1

(2)

We are doing regression using random projections, that is

ŷ︸︷︷︸
n×1

= X︸︷︷︸
n×d

S︸︷︷︸
d×m

η̂︸︷︷︸
m×1

, Sij ∼ N (0, 1)

θ̂ = Sη̂

η̂ = lim
λ→0

argmin
η

{∥y −XSη∥2 + λ∥η∥2}

(3)

The risk R(θ̂) = ∥θ̂ − θ∗∥ can be decomposed into bias and variance components by taking the
expectation over ϵ as follows:

Eϵ[R(θ̂)] = Eϵ[∥θ̂ − θ∗∥2]
= Eϵ[∥S(S⊤XX⊤S + nλI)−1S⊤X⊤︸ ︷︷ ︸

M

y − θ∗∥2]

= Eϵ[∥My − θ∗∥2]
= Eϵ[∥M(Xθ∗ + ϵ)− θ∗∥2]
= Eϵ[∥(MX − I)θ∗ +Mϵ∥2]
= ∥(MX − I)θ∗∥2 + Eϵ[∥Mϵ∥2]
= R(bias)(θ̂) + Eϵ[R

(var)(θ̂)]

(4)
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By taking the limit d, n,m → ∞ such that d
n → γ and m

n → δ we showed that in the under-
parametrized regime (δ < 1, γ < 1) we get

Eϵ[R
(var)(θ̂)] ∼ σ2δ

1− δ
(5)

In addition one can show that

R(bias)(θ̂) ∼ γ − δ

1− δ

∥θ∗∥2

γ
(6)

On this lecture we will see the derivation of the limit in the overparametrized case.

Overparametrized Regime

Recall that Σ̂ = 1
nXX⊤ and Tr(Σ̂(Σ̂ + λI)−1) ∼ Tr(Σ(Σ + κ(λ)I)−1), where κ(λ) − 1

φ(−λ) . When
taking λ → 0 we get

κ(λ) =

{
0, γ ≤ 1 (underparametrized)

γ − 1, γ > 1 (overparametrized)
(7)

This means that in the overparametrized regime, even when we have no regularization (λ → 0) we
have asymptotic regularization (κ(λ) = γ − 1 > 0).

Now let us derive the limit of the bias component of the risk in the overparametrized regime. Taking
the expectation of the term defined in Equation 4 we get

Eϵ[∥Mϵ∥2] = σ2Tr(M⊤M)

=
σ2

n
Tr[S⊤S(S⊤Σ̂S + λI)−1SΣ̂S⊤(S⊤Σ̂S + λI)−1]

(8)

The trace expression surely looks unwieldy, but we can make use of the following result:

Result (Proposition 2, Bach 2024).

Tr
[
AZ⊤(ZΣZ⊤ − nzI)−1ZBZ⊤(ZΣZ⊤ − nzI)−1Z

]
∼ Tr

[
A(Σ + 1

φ(z)I)
−1B(Σ + 1

φ(z)I)
−1

]
+

1

φ(z)2
Tr

[
A(Σ + 1

φ(z)I)
−2

]
Tr

[
B(Σ + 1

φ(z)I)
−2

]
· 1

n− df2(1/φ(z))
(9)
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Using this result (taking Z → S⊤,Σ → Σ̂, n → m, z → −λ,A → I,B → Σ̂, κ(λ) → κ̃(λ),df2 →
d̃f2 wrt Σ̂), we have the following asymptotic equivalence:

Eϵ[R
(var)(θ̂)] ∼ σ2

n
Tr[Σ̂(Σ̂ + κ̃(λ)I)−2] +

σ2κ̃(λ)2

n(m− d̃f2(κ̃(λ))
Tr[(Σ̂ + κ̃(λ)I)−2] Tr[Σ̂(Σ̂ + κ̃(λ)I)−2]

(10)

To simplify this formula we will use the following results:

• λ → 0 κ̃(λ) = 1
φ(−λ) → 0

• d̃f2(κ̃(λ)) = Tr[Σ̂2(Σ̂+)2] = n

• Using the push-through identity1 we have Σ̂(Σ̂+κ̃I)−2 = nX⊤(XX⊤+nκ̃I)−2X → nX⊤(XX⊤)−2X

• Using the Woodbury matrix identity 2 we have

κ̃(λ)2(Σ̂ + κ̃(λ)I)−2 = (I −X⊤(XX⊤ + nκ̃(λ)I)−1)X)2

→ (I − X⊤(XX⊤)−1X︸ ︷︷ ︸
projection matrix PX

)2

= (I − PX)2

= I − PX

(11)

Putting it all together we have

Eϵ[R
(var)(θ̂)] ∼ σ2Tr[X⊤(XX⊤)−2X] +

σ2

m− n
Tr[I − PX ] Tr[(XX⊤)−1]

= σ2Tr[(XX⊤)−1] +
σ2

m− n
Tr[I − PX ] Tr[(XX⊤)−1]

(12)

Note that Tr[(XX⊤ − nzI)−1] = φ̂(z)
n→∞−−−→ φ(z)

z→0−−−→ 1
κ(0) = 1

γ−1 . Also, Tr[I − PX ] = d − n,

because rank(PX) = n. Thus

Eϵ[R
(var)(θ̂)] ∼ σ2Tr[(XX⊤)−1] +

σ2

m− n
Tr[I − PX ] Tr[(XX⊤)−1]

∼ σ2 1

γ − 1
+

σ2

m− n
(d− n)

1

γ − 1

= σ2 1

γ − 1

(
1 +

d− n

m− n

)
= σ2

(
1

γ − 1
+

1

δ − 1

)
(13)

1Push-through identity: X(X⊤X + κI)−1 = (XX⊤ + κI)−1X
2Woodbury matrix identity: κ(X⊤X + κI)−1 = I −X⊤(XX⊤ + κI)−1X

3



Therefore we can see that Eϵ[R
(var)(θ̂)] decreases as δ or γ increases.

The result for the bias component of the risk is the following (we will not prove it):

R(bias) ∼
(
1− 1

γ

)
δ

1− δ
∥θ∗∥2 (14)

Thus R(bias) increases with γ and decreases with δ.

Double Descent

Combining the results from the previous lecture (underparametrized regime) and today’s results
(overparametrized regime), we illustrate the double descent phenomenon in Figure 1.

Eϵ[R
(var)(θ̂)]

R(bias)(θ̂)

δ = m
n1

γ−δ
1−δ

∥θ∗∥2
γ

γ2δ
1−δ

(
1− 1

γ

)
δ

1−δ∥θ∗∥
2

σ2
(

1
γ−1 + 1

δ−1

)

Underparametrized Overparametrized

Figure 1: Illustration of the double descent phenomenon.

References

Bach, Francis (2024). “High-Dimensional Analysis of Double Descent for Linear Regression with
Random Projections”. In: SIAM Journal on Mathematics of Data Science 6.1, pp. 26–50.

4


