
STAT 946 – Deep Learning Theory

Majid Ghasemi

Session 1

1 Instructor’s Contact

Dr. Mufan Li (Office M3 4006)

2 Grading Scheme

• Attendance: 25% (Scribing notes as part of it)

• Presentation: 25%

• Report: 50%

We need to talk with the prof about the report’s idea around the week of Sept 15.

3 Background Topics

• Markov Chains

• Measure Theory

• Stochastic Calculus

• Random Matrix Theory

• NTK (Neural Tangent Kernel)

• Deep Learning Training (which will not be covered in this course)
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4 Brief History of Neural Networks

Neural Networks (NNs) root back to Allan Turing (1948), Rosenblatt (1958,
1962). NNs resemble a brain based on the mentioned peoples beliefs but they
are simply two weights in a way that f(x; θ) = W1ϕ(W0x), where θ = {W0,W1}.
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In the early development of NNs, there was no efficient way to update the
weights across multiple layers. Gradient descent as an optimization method
dates back to Cauchy in the 19th century, but it was not until the 1980s that
the combination of stochastic gradient descent (SGD) and backpropagation be-
came the standard approach for training deep networks (Rumelhart, Hinton,
and Williams, 1986). Backpropagation is essentially an efficient application of
the chain rule, allowing the gradients of all weights to be computed by reusing
intermediate results instead of recalculating derivatives repeatedly. This effi-
ciency is what made training multi-layer neural networks practical.

θk+1 = θk − η∇L(θk), η > 0 (step size) (1)

f(x; θ) = W (n)h(d) (2)

hℓ+1 = Wℓ ϕ(hℓ) (MLP) (3)
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If we were to apply gradient descent to optimize the parameters θ of a neural
network, the iterative update rule is given by:

θk+1 = θk − η∇θL(θk), (5)

where η is the learning rate and ∇θL(θk) is the gradient of the loss function
with respect to the parameters. The calculation of these gradients across layers
is enabled by automatic differentiation, which makes training deep networks
computationally feasible.

Neural networks initially fell out of favour in the 1990s, largely due to their ten-
dency to overfit and theoretical challenges related to statistical learning theory
(e.g., VC theory). However, two key advances around the early 2000s reignited
interest:

• The practical use of Auto differentiation, enabling efficient computa-
tion of gradients in large networks.

• The adoption of GPUs for neural network training (around 2004),
providing significant computational acceleration. A notable milestone was
the work of Raina, Madhavan, and Ng (2009), who trained models with
over 100 million parameters using GPUs, reporting speedups of up to 100×
compared to CPU-based training.

This set the stage for the modern deep learning era. The breakthrough of
AlexNet (2012), which achieved state-of-the-art results on the ImageNet image
classification benchmark, marked the second wave of neural network popularity.

Several major contributions further shaped the field:

• Adam optimizer (2014): widely adopted as an alternative to SGD due
to its adaptive learning rates and robustness.

• Transformers (2017): introduced as a new architecture, they became
the backbone of modern natural language processing and large-scale AI
systems.

• Scaling laws (2020): demonstrated that transformer performance im-
proves predictably with increased model size, dataset size, and compute
resources (see GPT-4 Technical Report).

The central technical takeaway of this era was the principle that “bigger is
consistently and predictably better.” However, more recent research has raised
questions about the universality of this rule, suggesting possible limits or ex-
ceptions to the scaling paradigm.
Deep Learning (DL) research is in a perpetual cycle:
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Propose Algo.

Scale up.

There are limits to DL progress; a practical way to phrase the question is: “Can
we evaluate the limit given our compute budget?” A simple training-compute
proxy is proportional to model size, data processed per step, and training steps:

C ∝ Nparams ×B × S, (6)

where C is the compute budget, Nparams is the number of parameters, B is
the batch size (tokens/examples per step), and S is the number of optimization
steps.

5 Overview of ”Other DL Theory”

5.1 Universal Approximation

Let
f∗ : [0, 1]d → R, f∗ ∈ Smoothness class Ch, Cα, W k,p.

Then, for every ε > 0, there exists a neural network with width n and depth
d such that

∥f − f∗∥ ≤ ε.

(The approximation error depends on the smoothness properties of f∗.)

5.2 Statistical Learning Theory

• X ,Y : Data domain

• H : Hypothesis class, h : X → Y

• D ∈ P(X × Y) : Data distribution

• ℓ : Loss function, ℓ : Y × Y → R≥0
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• A : Learning algorithm, A : (X × Y)m → H

The standard learning guarantee can be expressed as follows:

∀ε > 0, δ ∈ (0, 1), ∃A and m∗ > 0 s.t.

∀D, (xi, yi)
m
i=1

i.i.d.∼ D, m ≥ m∗,

hm = A
(
(xi, yi)

m
i=1

)
,

then with probability at least 1− δ, ℓ(hm(x), y) ≤ inf
h∈H

ℓ(h(x), y) + ε.

5.3 Model Agnostic

Optimization

Assume the loss function L is convex and has a Lipschitz-continuous gradient.
Then, using stochastic gradient descent (SGD), we can guarantee that

L ≤ ε after . . . steps of SGD.

Edge of Stability

The training dynamics of SGD often operate near the edge of stability, where
the step size is close to the largest value that still ensures convergence. This
regime is empirically observed to play a role in the efficiency and generalization
of modern deep networks.

6 Open Problems in Deep Learning Theory

Why do we study DL? Several important open theoretical problems remain
unresolved:

6.1 Compare and Improve Methods

How can we say which method is better? This raises several sub-questions:

• Why do scaling laws work?

• Compare benchmarks: are results consistent across different datasets
and tasks?

• Hyperparameter tuning without full training: can we predict opti-
mal values (e.g., step size η in SGD, depth-to-width ratio) without running
the entire algorithm?
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6.2 Why Does Deep Learning Work?

Two central issues are:

• Optimization for non-convex loss L: training deep nets is NP-hard
in general, yet gradient-based methods perform well in practice.

• Overfitting and generalization: despite highly overparameterized mod-
els, deep nets often generalize well.

This is often illustrated by the bias-variance trade-off, where increas-
ing parameters first decreases risk (bias reduction), but past a point leads to
overfitting. Deep learning, however, often appears to break this classical curve.

# params / model complexity

Loss / Risk
optimal complexity

sweet spot

Underfit
(high bias)

Overfit
(high variance)

6.3 Scaling Limits (Important)

Deep learning research often operates in a scaling limit regime:

• Number of random variables (or sources) → ∞.

• Contribution of each variable → 0.

This mirrors the Central Limit Theorem:∑n
i=1(Xi − µ)

σ
√
n

d−→ N (0, 1), n → ∞,

where a complex system converges to a nice limit object.
For neural networks:

Finite NN −→ “nice limit”

such as Gaussian processes or neural tangent kernels.
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6.4 Summary

The central open problems can be grouped as:

• Understanding scaling laws and limits.

• Explaining why non-convex optimization works.

• Explaining why deep nets generalize despite over-parameterization.

• Developing principled methods for model and hyperparameter selection.
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