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(Vaswani et al., 2017)

A BRIEF INTRO TO 
TRANSFORMERS
• An encoder and/or decoder architecture that consists of scaled dot-

product attention mechanism. 
o Good representation of compatibility 
o Fast and interpretable computation 
o Parallelizable evaluation across all queries (can leverage GPUs) 
o Scaled dot-products for stable softmax gradients in high dimensions 

(prevents large magnitudes)
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(Vaswani et al., 2017)

A BRIEF INTRO TO 
TRANSFORMERS
Input + Positional Encoding:  
•  tokens, each with dimension  

Attention (Single-Head for this presentation, denoted ): 
• Key: , Query: Q , Value: V  

•  

Goal: Find the “alignment” between keys and queries to scale values 
Update: 

𝒙(0) ∈ ℝ𝑛×𝑑

𝑛 𝑑

𝑆𝐴𝑡𝑡

𝐾(𝑘) ∈ ℝ𝑛×𝑙 (𝑘) ∈ ℝ𝑛×𝑙 (𝑘) ∈ ℝ𝑛×𝑙

SAtt(x(k); K(k), Q(k), V(k)) = Sof tma x (β−1(Q(k)x(k)T(K(k)x(k))) V(k)x(k)

𝒙(𝑘 + 1) =
𝑥(𝑘) + 𝑆𝐴𝑡𝑡(𝒙(𝑘); 𝐾(𝑘), 𝑄(𝑘), 𝑉 (𝑘))
𝑥(𝑘) + 𝑆𝐴𝑡𝑡(𝒙(𝑘); 𝐾(𝑘), 𝑄(𝑘), 𝑉 (𝑘))
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Focus of this presentation



PRESENTATION TITLE

Motivation
▪ Transformers, like residual neural networks, can be modeled in continuous-time as 

an ordinary differential equation (ODE). 
▪ Key idea: View transformers as interacting particle systems, where each particle is 

a token. 
▪ Key observation: Particles tend to “cluster” under these dynamics – limiting 

distribution is a point mass???



PRESENTATION TITLE

Outline of the Presentation
▪ Background on optimal transport 

▪ Continuity equation 
▪ Wasserstein distance -> Wasserstein gradient 

▪ Mathematical framework to study transformers 
▪ Probability flows on spheres (self-attention and layer-normalization) 
▪ Wasserstein gradient flow – convergence in distribution 

▪ Clustering 
▪ A single cluster for large temperature 
▪ A single cluster for small temperature
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BACKGROUND ON OPTIMAL 
TRANSPORT
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Monge and Kantarovich Problem
▪ Introduced by Monge in 1781, the optimal transport (OT) problem 

is concerned with transferring mass from one distribution to 
another in a way as to minimize an expected cost function . 

▪ Let  and  be two Polish spaces, and let . 
Goal: Find a measurable transport map  such that  

and  minimizes  

▪ Kantarovich proposed a relaxation by considering joint 

distributions : 

c( ⋅ , ⋅ )
X Y μ ∈ 𝒫(X ), ν ∈ 𝒫(Y )

T : X × Y T#μ = ν

T inf
T:T#μ=ν ∫X

c(x, T(x))μ(dx)

Π(μ, ν) inf
π∈Π(μ,ν) ∫X×Y

c(x, y)π(dx, dy)

7Monge (1781). “Théorie des déblais et des remblais”. De l'Imprimerie Royale
Lai et al. “FP-Diffusion: Improving Score-based 
Diffusion Models by Enforcing the Underlying 
Score Fokker-Planck Equation”. ICML 2023.



Variational Optimal Transport
▪ If the cost function is a distance metric, then we denote the minimum 

cost  as the -Wasserstein distance. 

▪ Brenier (1991) proved the existence of a unique convex potential  
such that the vector field  that solves the OT problem in 
continuous time. 

▪ Let us consider the ODE: 
 

▪ This ODE evolves a distribution, modelled by the continuity equation  
 

▪ Benamou and Brenier (2000) proved that the 2-Wasserstein distance is 
equal to the average kinetic energy: 

Wp
p(μ, ν) = inf

π∈Π(μ,ν)
𝔼(x,y)∼π[d(x, y)p] p

φ(xt)
b(xt) = ∇φ(xt)

·xt = b(xt), x0 ∼ μ

∂t pt = − ∇ ⋅ (ptbt), p0 = μ, p1 = ν

W2
2(μ, ν) = min

b s.t. p0=μ,p1=ν ∫
1

0 ∫ pt(xt)∥b(xt)∥2dxtdt
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Benamou, J.-D. and Y. Brenier (2000). “A computational fluid mechanics solution to the Monge-Kantorovich mass 
transfer problem”. Numerische Mathematik, vol. 84, pp. 375–393. 
Brenier, Y. (1991). “Polar factorization and monotone rearrangement of vector-valued functions”. Communications 
on Pure and Applied Mathematics, vol. 44, no. 4, pp. 375–417.

De Bortoli et al. “Diffusion Schrödinger Bridge 
with Applications to Score-Based Generative 
Modeling”. NeurIPS 2021.



Towards understanding Wasserstein gradient - Rethinking 
Gradients?
▪ Gradients are simply defined by their underlying inner products. 

 

▪ How about function spaces (e.g. )? 

 

▪ Analogy to Wasserstein spaces - Needs an inner product!!!

d
dt

V(x(t)) |t=0 = ⟨∇V(x(0)),
d
dt

x(t) |t=0 ⟩
L2

d
dt

f(xt) |t=0 = ⟨∇L2
f(x0), ∂txt |t=0 ⟩L2

,  where ⟨ f, g⟩ = ∫ f(z)g(z)dz

9



Wasserstein Distance as an Inner Product

 

▪ Analogy to weighted  norm: 

 

▪ (Which is strikingly similar to the geodesic distance on a Riemannian manifold!) 
where  s.t.  

▪ We can now define the following Wasserstein inner product on two functions  and  with : 

, where 

W2
2(μ, ν) = min

φ s.t. p0=μ,p1=ν ∫
1

0 ∫ pt(xt)∥∇φ(xt)∥2dxtdt

L2

W2
2(μ, ν) = min

pt s.t. p0=μ,p1=ν ∫
1

0
∥∂t pt∥2

pt
dt

∥∂t pt∥2
pt

= min
φt

∥∇φ(x)∥2
L2(pt) ∂t pt = − ∇ ⋅ (pt ∇φ)

h1 h2 ∫ h1 = ∫ h2 = 0

⟨h1, h2⟩p = ∫ ⟨∇φ1, ∇φ2⟩p(dx) = ⟨∇φ1, ∇φ2⟩L2(p) −∇ ⋅ (p∇φi) = hi
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Grand Finale - Wasserstein Gradient
▪ Use the definition of derivative 

▪  

▪ Assume  is -differentiable 

 

 

▪ Comparing to the Wasserstein inner product, we conclude 

d
dt

f(pt) |t=0 = ⟨∇W2
f(p0), ∂t pt |t=0 ⟩pt

f L2
d
dt

f(pt) |t=0 = ⟨∇L2
f(p0), ∂t pt |t=0 ⟩L2

= − ⟨∇L2
f(p0), ∇ ⋅ (p0 ∇φ)⟩L2

= ⟨∇∇L2
f(p0), p0 ∇φ⟩L2

= ⟨∇∇L2
f(p0), ∇φ⟩L2(p0)

∇W2
f(p) = − ∇ ⋅ (p∇∇L2

f(p))

11
Otto, F. (2001). “The geometry of dissipative evolution equations: the porous 
medium equation”. Communications in Partial Differential Equations, vol. 26, 
no. 1-2, pp. 101–174.



Digesting Wasserstein Gradient Flows
▪ Revisit continuity equation. Suppose a density 

evolves by 
 

▪ Then a particle drawn from  evolves by the 
ODE 

 

▪ Benefits of Wasserstein gradient flow: 
▪ Strong stability guarantees 
▪ Guaranteed conservation of mass

∂t pt = − ∇W2
f(pt) = ∇ ⋅ (p∇∇L2

f(p))

pt

·xt = ∇∇L2
f(pt(xt))
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▪ Example: If , then  

▪  

▪  

▪ If , 

▪  

▪

f(p) = ∫ u(p(x))dx

∇L2
f(p) = u′￼(p)

∇W2
f(p) = − ∇ ⋅ (pu′￼′￼(p)∇p)

f(p) = ∫ u(x)p(x)dx

∇L2
f(p) = u(p)

∇W2
f(p) = − ∇ ⋅ (p∇u)



PRESENTATION TITLE

MODELLING OF TRANSFORMERS
• Probability flows on spheres (self-attention and layer-normalization) 
• Wasserstein gradient flow – convergence in distribution
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Input 
Embedding

Input

Single-Head 
Attention

𝐿  ×

Add & Norm



Chen et al. "Neural ordinary differential equations." NeurIPS 2018

Inspiration from Residual Neural Networks (ResNets)
▪ ResNets approximate a function  at  through a sequence of 

layers with skip connections 
 

▪ The layer can be interpreted naturally in continuous-time 
 

▪ These are called neural ODEs.

𝑓 𝑥 ∈ ℝ𝑑

𝒙(𝑘 + 1) = 𝒙(𝑘) + 𝑤(𝑘)𝜎(𝑎(𝑘)𝒙(𝑘) + 𝑏(𝑘)),  𝑘 = 0,…, 𝐿 − 1,  𝒙(0) = 𝒙

𝒙̇(𝑡) = 𝑤(𝑡)𝜎(𝑎(𝑡)𝒙(𝑡) + 𝑏(𝑡)),  𝑡 ∈ [0,𝑇],    𝒙(0) = 𝒙
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The role of Softmax – Understanding Self-Attention

▪ Expanding  

 

Where  is the normalization term, and  

 is the attention score.

SAtt(x(k)) = Softmax(β(Q(k)x(k)) ⋅ (K(k)x(k))) V(k)x(k)

𝑆𝑜𝑓𝑡𝑚𝑎𝑥

[𝑆𝐴𝑡𝑡(𝒙(𝑘))]𝑖
=

𝑛

∑
𝑗=1

exp(𝛽⟨𝑄(𝑘)𝒙𝑖(𝑘), 𝐾(𝑘)𝒙𝑗(𝑘)⟩)
𝑍𝛽,𝑖(𝑘)

𝑉 (𝑘)𝒙𝑗(𝑘),

 𝑍𝛽,𝑖(𝑘) =
𝑛

∑
𝑗=1

exp(𝛽⟨𝑄(𝑘)𝒙𝑖(𝑘), 𝐾(𝑘)𝒙𝑗(𝑘)⟩)
𝐴𝑖𝑗(𝑘) = exp(𝛽⟨𝑄(𝑘)𝒙𝑖(𝑘), 𝐾(𝑘)𝒙𝑗(𝑘)⟩)/𝑍𝛽,𝑖(𝑘)
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PRESENTATION TITLE

Extension to Transformers
▪ Transformers operate on a sequence of vectors , 

where each  is called a token/particle, and  is 
called a prompt. 

▪ Challenge: Transformers use layer normalization 

 

▪ Intuition: A transformer in continuous-time is a flow map 
on , where  is the unit sphere in  
▪ Project the flow onto the tangent space of the  

𝒙(0) ∈ ℝ𝑛×𝑑

𝒙𝑖(0) ∈ ℝ𝑑 𝒙(0)

𝒙𝑖(𝑘 + 1) =
𝒙𝑖(𝑘) + [𝑆𝐴𝑡𝑡(𝒙(𝑘); 𝐾(𝑘), 𝑄(𝑘), 𝑉 (𝑘))]𝑖

𝒙𝑖(𝑘) + [𝑆𝐴𝑡𝑡(𝒙(𝑘); 𝐾(𝑘), 𝑄(𝑘), 𝑉 (𝑘))]𝑖

,

(𝕊𝑑−1)𝑛 𝕊𝑑−1 ⊂ ℝ𝑑 ℝ𝑑

𝕊𝑑−1

𝑥̇𝑖(𝑡) = 𝑃 ⊥
𝑥𝑖(𝑡)([𝑆𝐴𝑡𝑡(𝑥(𝑡))]𝑖),  where 𝑃 ⊥

𝑥 𝑦 = 𝑦 − ⟨𝑥, 𝑦⟩𝑥

16

𝑥𝑖(𝑡)

𝑇𝑥𝑖(𝑡)𝕊
𝑑−1

[𝑆𝐴𝑡𝑡(𝑥(𝑡))]𝑖

𝑃 ⊥
𝑥𝑖(𝑡)([𝑆𝐴𝑡𝑡(𝑥(𝑡))]𝑖)



Preliminary Observations in 
Transformers
▪ Consider a simple model:  

▪ For most of the paper, we will consider the case 

𝑄(𝑡) = 𝐾(𝑡) = 𝑉 (𝑡) = 𝐼

𝑥̇𝑖(𝑡) = 𝑃 ⊥
𝑥𝑖(𝑡)

1
𝑍𝛽,𝑖(𝑡)

𝑛

∑
𝑗=1

exp(𝛽⟨𝒙𝑖(𝑡), 𝒙𝑗(𝑡)⟩)𝒙𝑗(𝑡)

𝑄(𝑡) = 𝐾(𝑡) = 𝑉 (𝑡) = 𝐼

17



Back to Continuity Equation
▪ Let  be the distribution of all the particles  
▪ Consider the infinite particle limit 

 
▪ Where the vector field  is 

 

▪ With  

▪ How does  evolve with ? Continuity equation!  

μt(x) x1(t), . . . , xn(t)

·xi(t) = X[μt](xi(t))
X[μ] : 𝕊d−1 → 𝕊d−1

X[μt](x) = P⊥
x (Zβ,μt

(x)−1 ∫ exp(β⟨x, y⟩) y dμt(y))
Zβ,μt

(x) = ∫ exp(β⟨x, y⟩) dμt(y)

μt(x) t
∂tμt = − ∇ ⋅ (X[μt]μt)

18



The Interaction Energy
▪ Does the continuity equation admit quantities that are monotonically increasing/

decreasing? 
▪ Answer: Interaction energy 

▪  

▪ Its time derivative,  increases along the 

continuity equation. 
▪ Similarly, if , then the interaction energy decreases along the continuity 

equation. 
▪ Proposition 3.4. Let  and . The unique global minimizer of  over 

 is the uniform measure. Any global maximizer is a Dirac mass  at some 
. 

▪ Proof outline: Consider Gegenbauer polynomials!

Eβ(μt) =
1

2β ∬ exp(β⟨x, x′￼⟩)dμt(x)dμt(x′￼)

d
dt

Eβ[μt] = ∫ ∥X[μt](x)∥2Zβ,μt
(x)dμt(x)

V = − I

β > 0 d ≥ 2 Eβ
𝒫(𝕊d−1) δx*
x* ∈ 𝕊d−1

19

Minimizer

Maximizer



Wasserstein Gradient Flow: Attempt #1
▪ Recall: Suppose a density evolves by: 

 

▪ Then a particle drawn from  evolves by the ODE 
 

▪ Notice that  is a logarithmic derivative: 

 

 

 

▪ However,  cannot be expressed as an 

 gradient

∂t pt = ∓ ∇W2
f (pt) = ± ∇ ⋅ (p∇∇L2

f (p))

pt·xt = ± ∇∇L2
f (pt(xt))

X[μ]

∇S log∫ β−1 exp(β⟨x, y⟩)dμ(y)

= P⊥
x (Z−1

β,μ(x)∫ exp(β⟨x, y⟩)∇⟨x, y⟩dμ(y))
= P⊥

x (Z−1
β,μ(x)∫ exp(β⟨x, y⟩) y dμ(y))

log∫ β−1 exp(β⟨x, y⟩)dμ(y)

L2
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▪ Remark: Understanding Spherical 
Gradient 

▪ At a point , the tangent space is 
 

▪ Recall gradients:  

 
▪ Conclusion:  

x ∈ 𝕊d−1

Tx𝕊d−1 = {v ∈ ℝd : ⟨v, x⟩ = 0}

Df(x)[v] = ⟨∇S f(x), v⟩S
= ⟨∇f(x), v⟩ − ⟨∇f(x), x⟩⟨x, v⟩

∇S f(x) = ∇f(x) − ⟨∇f(x), x⟩x
= P⊥

x (∇f(x))



Attempt #2: Remove denominator!
▪ Remove  in the softmax formulation 

(e.g. Sinkformer) 
▪ New attention method: 

▪ Continuity equation:

Zβ,i(t)

X[μt](x) = P⊥
x (∫ exp(β⟨x, y⟩) y dμ(y))

∂tμt = − ∇ ⋅ (P⊥
x (∫ exp(β⟨x, x′￼⟩dμt(x′￼)μt(x)))
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▪ Back to interaction energy 

▪ Take the  gradient

▪ Take the spherical gradient

▪ Conclusion:  
interaction energy is 

increasing with 

Eβ(μt) =
1

2β ∬ exp(β⟨x, x′￼⟩)dμt(x)dμt(x′￼)

L2

∇L2
Eβ(μt) =

1
β ∫ exp(β⟨x, x′￼⟩)dμt(x′￼)

∇S ∇L2
Eβ(μt) = P⊥

x (∫ exp(β⟨x, x′￼⟩)x′￼dμt(x′￼))
X[μ](x) = ∇S ∇L2

Eβ[μ](x)
∂tμt = ∇W2

Eβ[μ] ⟹
t

Sander at al. “Sinkformers: Transformers with doubly stochastic attention”. AISTATS 2022



Sketch: Extension to general parameters
▪ Assume  is symmetric and  
▪ New inner product on : 

 

▪
where  and  

Set  

▪ Exercise: Show , where 

QTK V = QTK
TX(𝕊d−1)n

⟨(a1, . . . , an), (b1, . . . , bn)⟩X =
n

∑
i=1

Zβ,i⟨ai, bi⟩

ai, bi ∈ Txi
𝕊d−1 Zβ,i =

n

∑
j=1

eβ⟨xi,xj⟩

Eβ(X ) =
1

2β

n

∑
i=1

n

∑
j=1

eβ⟨Vxi,xj⟩

·X(t) = ∇X Eβ(X(t))

·Xi(t) = P⊥
xi

n

∑
j=1

eβ⟨Vxi,xj⟩Vxj
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CLUSTERING IN TRANSFORMERS
• A single cluster for small/large  
• High-dimensional cases

β
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The case  (Theorem 4.1)β = 0
▪ Vector field:  

▪ Result: For Lebesgue almost any initial sequence , all particles converge 
to a single consensus point  

▪ Proof structure: 
▪ Łojasiewicz theorem (1963): ensures convergence to critical points 
▪ Benaïm (1999): constructs a Lyapunov function around the saddle manifold

·xt(t) = P⊥
xi

(x(t))
(xi(0))i∈[n]

x*
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Small and Large β
▪ Theorem 4.3 (Small ): If , almost all initial sequence  

converge to a single cluster. 
▪ Theorem 5.1 (Large ): If , same conclusion holds. 
▪ Proof sketch: 

▪ Dynamics: Gradient flow of interaction energy. 
▪ Energy landscape: Global maxima = Dirac masses 
▪ Łojasiewicz theorem + Benaïm

β β ∈ O(n−1) (xi(0))i∈[n]

β β ≥ C(d)n2
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High Dimensional Results
▪ Theorem 6.1: In , clustering occurs for any  
▪ Theorem 6.3: If , convergence is exponential:  
▪ Theorem 6.9: If , histogram of inter-particle inner product collapses to 1 in finite 

time. 

d ≥ 3 β ≥ 0
d ≥ n ∥xi(t) − x*∥ ≤ Ce−λt, λ = O(e−β)
d ≥ n
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Future Research (Maybe course project :) )

▪ Comparing Encoder-
only and Decoder-only 
architectures 

▪ What does the mixture 
distribution look like?

27Yao et al. “Towards neural scaling laws for time series foundation 
models.” ICLR 2025


