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A BRIEF INTRO TO
TRANSFORMERS

« An encoder and/or decoder architecture that consists of scaled dot-
product attention mechanism.

o Good representation of compatibility
o Fast and interpretable computation
o Parallelizable evaluation across all queries (can leverage GPUs)

o Scaled dot-products for stable softmax gradients in high dimensions
(prevents large magnitudes)
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A BRIEF INTRO TO
TRANSFORMERS

Input + Positional Encoding: x(0) € R™¢
n tokens, each with dimension d
Attention (Single-Head for this presentation, denoted SAr1):
- Key: K(k) € R™, Query: Q(k) € R™!, Value: V(k) € R™!
SAr1(x(k); K(k), Q(k), V(k)) = Softmax (B~ (Q(x(k) (K(k)x(k))) V(k)x(k)
Goal: Find the “alignment” between keys and queries to scale values

Update:

x(k) + SAtt(x(k); K(k), Q(k), V(k))
x(k+1)=

%) + Sa11(x0); K01, 00, Vi) |
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Motivation

= Transformers, like residual neural networks, can be modeled in continuous-time as
an ordinary differential equation (ODE).

= Key idea: View transformers as interacting particle systems, where each particle is
a token.

= Key observation: Particles tend to “cluster” under these dynamics — limiting
distribution is a point mass???
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e
Outline of the Presentation

» Background on optimal transport
= Continuity equation
= Wasserstein distance -> Wasserstein gradient
» Mathematical framework to study transformers
= Probability flows on spheres (self-attention and layer-normalization)
= Wasserstein gradient flow — convergence in distribution
= Clustering
= A single cluster for large temperature
= A single cluster for small temperature
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BACKGROUND ON OPTIMAL
TRANSPORT
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Monge and Kantarovich Problem

= Introduced by Monge in 1781, the optimal transport (OT) problem

is concerned with transferring mass from one distribution to
another in a way as to minimize an expected cost function c( -, - ).

Let X and Y be two Polish spaces, and let y € P(X),v € LP(Y).
Goal: Find a measurable transport map 7 : X X Y such that T,y = v

and 7 minimizes inf J c(x, T(x))u(dx)
I'Typ=v Jx

Kantarovich proposed a relaxation by considering joint

distributions II(x,r): inf J c(x,y)n(dx,dy)
XxY

r€ll(p,v)

Monge (1781). “Théorie des déblais et des remblais”. De I'Imprimerie Royale 7

Lai et al. “FP-Diffusion: Improving Score-based
Diffusion Models by Enforcing the Underlying
Score Fokker-Planck Equation”. ICML 2023.



Variational Optimal Transport

= If the cost function is a distance metric, then we denote the minimum
cost Wg (u,v) = Inf [E(x,y),vﬂ[d(x, y)?] as the p-Wasserstein distance.

re€ll(p,v)

= Brenier (1991) proved the existence of a unique convex potential ¢(x,)
such that the vector field b(x,) = V ¢(x,) that solves the OT problem in

continuous time.
= Let us consider the ODE:

= This ODE evolves a distribution, modelled by the continuity equation

o,p;=—V - (pb),py=p,py =v
= Benamou and Brenier (2000) proved that the 2-Wasserstein distance is

X, =b(x,),xy ~ U

equal to the average kinetic energy:

W3, v) =

Benamou, J.-D. and Y. Brenier (2000). “A computational fluid mechanics solution to the Monge-Kantorovich mass

1
min | [ pellbcs) Paxar

b S.X. py=p.p;=v

0

transfer problem”. Numerische Mathematik, vol. 84, pp. 375-393.

Brenier, Y. (1991). “Polar factorization and monotone rearrangement of vector-valued functions”. Communications

on Pure and Applied Mathematics, vol. 44, no. 4, pp. 375-417.
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Towards understanding Wasserstein gradient - Rethinking
Gradients?

» Gradients are simply defined by their underlying inner products.
d d
EV(X(I)) | =0 = < VV(x(0)), EX(D |t=0>
» How about function spaces (e.g. L,)?

d
St = (V10051 ) - where (£.g) = |fg(a)dz
5 L

2
= Analogy to Wasserstein spaces - Needs an inner product!!!
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Wasserstein Distance as an Inner Product

1
Wi(u,v)=  min J [pt<xt>||w<xt>||2dx,dr
¢ S.t. py=u.pi=v J
= Analogy to weighted L, norm:
1
W= min | o)
p, St py=u.pi=v J

= (Which is strikingly similar to the geodesic distance on a Riemannian manifold!)

where ||0,p,||> = min ||V¢(X)||]%2(pt) st.d.p,=—V-(p,Vo)
@,

We can now define the following Wasserstein inner product on two functions /4, and 4, with [hl = [hz =0:

(hy, hy), = I( Vo, Voo )p(dx) = (Vo V@)1 ), where =V - (pVg,) = h;

UNIVERSITY OF
10 %%9 WATERLOO | MatHematics



e
Grand Finale - Wasserstein Gradient

. Use the definition of derivative
1P o = { VS P0- 0o )

« Assume f'is L,-differentiable

o= { Vit o) == (V0 fP0.Y - (Vo))

2 L2

Pt

= (YLt e) = (VL0 Ve)

» Comparing to the Wasserstein inner product, we conclude
Vi, f(p)==V-(pVV, f(p)

Otto, F. (2001). “The geometry of dissipative evolution equations: the porous W UNIVERSITY OF FACULTY OF
medium equation”. Communications in Partial Differential Equations, vol. 26, 11 @ WATERLOO | matHeMATICS
no. 1-2, pp. 101-174.



Digesting Wasserstein Gradient Flows

= Revisit continuity equation. Suppose a densit
evolves by yed PP Y Example: If f(p) = [u( p(x))dx, then
atpt - = VWZf(pz) =V- (pVVLZf(p)) . Vsz(p) — u’(p)
. g}[l)eél a particle drawn from p, evolves by the . Vi, f(p) = =V - (pu"(p) Vp)
X, = VV, f(p(x,) . f(p) = Ju(X)p(X)dx,

» Benefits of Wasserstein gradient flow:
N « V., f(p) =u(p)
= Strong stability guarantees
» Guaranteed conservation of mass = Vw,J(p)==V-(pVu

UNIVERSITY OF
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MODELLING OF TRANSFORMERS ™

» Probability flows on spheres (self-attention and layer-normalization)

« Wasserstein gradient flow — convergence in distribution
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D
Inspiration from Residual Neural Networks (ResNets)

= ResNets approximate a function f at x € R“ through a sequence of
layers with skip connections

x(k + 1) = x(k) + w(k)o(a(k)x(k) + b(k)), k =0,...,L -1, x(0) = x

= The layer can be interpreted naturally in continuous-time

Residual Network ODE Network
x(1) = wt)o(a()x(@) + b)), t € [0.T], x(0)=x 5 5 ;
= These are called neural ODEs. 4 . 4 ¢
g3 g3
g, g %

-5 0 5 -5 0 5
Input/Hidden/Output Input/Hidden/Output
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R
The role of Softmax — Understanding Self-Attention

SA1t(x(k)) = Softmax(p(Q(k)x(k)) - (K(k)x(k))) V(k)x(k)

« Expanding So ftrmax

, €XD <ﬂ<Q<k>xi(k),K<k>x,<k>>>
[sAt(x(0)], = Y AT V(kx,(K),

—1
jl’l

Where Z; (k) = 2 exp ( ﬂ<Q(k)xl-(k), K(k)x j(k)>> is the normalization term, and

j=1

A; (k) = exp ( ﬂ<Q(k)x,.(k), K(k)x j(k)>> /Z; (k) is the attention score.

UNIVERSITY OF
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Extension to Transformers o

[SAtt(x(1)].

« Transformers operate on a sequence of vectors x(0) € R"™“,
where each x,(0) € R is called a token/particle, and x(0) is
called a prompt. p;(l)< [SAtt(x(2)) )

= Challenge: Transformers use layer normalization | '

x,(k) + | SAtt(x(k); K(k), Q(k), V(k))]

i

X (k+1)= ;
Hx,.(k) + [SAtt(x(k); K(k), Q(k), V(K))] H

= Intuition: A transformer in continuous-time is a flow map
on (S%1)", where S%~! c R“is the unit sphere in R?

= Project the flow onto the tangent space of the S9!

x;(t) = P&z)( [SAtt(x(t))]l), where Pry = y — (x, y)x

W UNIVERSITY OF EACULTY OF
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Preliminary Observations in
Transformers

= Consider a simple model: Q(t) = K(t) = V(t) = 1

n

50 = P, % > exp(A(x(0.x,0) )x,0

Jj=1

= For most of the paper, we will consider the case
o) =K@ =V()=1

Figure 1. Histogram of {{zi(t),z;(t))} (i j)e[n]2,i; at different layers ¢
in the context of the trained ALBERT XLarge v2 model ([LCG™20] and
https://huggingface.co/albert-xlarge-v2)?, which has constant pa-
rameter matrices. Here we randomly selected a single prompt, which in
this context is a paragraph from a random Wikipedia entry, and then
generate the histogram of the pairwise inner products. We see the pro-
gressive emergence of clusters all the way to the 24th (and last) hidden
layer (top), as evidenced by the growing mass at 1. If the number of
layers is increased, up to 48 say, the clustering is further enhanced (bot-

tom).
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Back to Continuity Equation

« Let y,(x) be the distribution of all the particles x,(?), . . . , x,,(?)
Consider the infinite particle limit

X)) = X[p ) (x:(0)
Where the vector field X[ u] : si-1  gd-1 g

X[p](x) = P} <Zﬁ,ﬂt(X)‘1 JeXp(ﬁ<x,y>) y dﬂz()’))

With 2,0 = | exp(p(e.)) di()

How does p,(x) evolve with ? Continuity equation!

o, = —V - (Xl lu,)

18 WATE R LOO MATHEMATICS



The Interaction Energy

= Does the continuity equation admit quantities that are monotonically increasing/
decreasing?

= Answer: Interaction energy

1
. B =5 [|expepe.aducoduces

. ~~

d
_ Its time derivative, EEﬂ[,ut] = J | X Tpe,1(x) ||zZﬂ,Mt(x)d/,tt(x) increases along the

continuity equation. ‘
= Similarly, if V = — I, then the interaction energy decreases along the continuity .
equation. Maximizer
- Proposition 3.4. Let f > 0 and d > 2. The unique global minimizer of £ over "

P(S* 1) is the uniform measure. Any global maximizer is a Dirac mass & . at some
o e §i-1 [

= Proof outline: Consider Gegenbauer polynomials!

UNIVERSITY OF
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Wasserstein Gradient Flow: Attempt #1

= Recall: Suppose a density evolves by: . . .
00, =F Vo f(p) =%V - (pVV, f(p)) Remark: Understanding Spherical

Gradient

» Then a particle drawn from p, evolves by the ODE A - Sd—l Tt t .
X, =t VV, f(p(x)) = Atapointx € , the tangent space 1s

. . o TS ={veRy: (v,x) =0}
= Notice that X[u] is a logarithmic derivative: .
= Recall gradients:

Vtog [~ exp(pteyaucy DF)IV] = (Vs f(x), V)
= (Vf(x),v) — (Vf(x), x){x, V)
= Conclusion:

: v V) — (V)
=pl (Zﬁ_”“l‘(x), exp(B(x,y)) y dﬂ(y)> :S£ )(Clx()Vf(x)j; (xX) = (Vf(x), x)x

= P} <Z/; L) | exp(Bx, y)) V {x, y>dﬂ(y)>

. However, log [ p~Lexp(B(x, y))du(y) cannot be expressed as an

L, gradient

UNIVERSITY OF
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R
Attempt #2: Remove denominator!

= Remove Z; (7) in the softmax formulation = Back to intleraction energy
(e.g. Sinkformer) Eyu) =~ ﬂ exp(B(x, X)), (x)dp,(x")
= New attention method: p

= Take the L, gradient

X[/’[t](x) = P)EL <J€Xp(ﬂ<X,)’>) Yy dﬂ()’)) VL Eﬂ(ﬂ) — lJ'eXp(,B@C x/))d’u (x/)
) ’= g ’ t

= Continuity equation: , ,
= Take the spherical gradient

o=~V - <P¢ ([expwx, x'>dut<x'>u,<x))> VsV, Eyu) = Pt (‘exp<ﬁ<x, x'>>x'dm<x’>>

» Conclusion: X[u](x) = VSVLzEﬂ[/,t](x)
Oy = Vy,Eglu] = interaction energy is
increasing with ¢

W UNIVERSITY OF | L Uity oF
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D
Sketch: Extension to general parameters

= Assume Q7K is symmetric and V = Q'K

= New inner product on TX(Sd_l)”:

{(ay,....a,).(by,....b >>X—Zzﬂl<a,, )

where a;, b; € TxiSd_1 and Z;; = Z X))

Set E4(X) = ZZ AVxi;)

11]1

. Exercise: Show X(¢) = VXEﬂ(X(t)), where
X(t) =P[ ) My,
j=1

W UNIVERSITY OF EACULTY OF
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CLUSTERING IN TRANSFORMERS

» A single cluster for small/large f

« High-dimensional cases

UNIVERSITY OF
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B
The case / = 0 (Theorem 4.1)

. Vector field: i(f) = Py (X(1))

» Result: For Lebesgue almost any initial sequence (x0));c,,, all particles converge
to a single consensus point x*

= Proof structure:

= Lojasiewicz theorem (1963): ensures convergence to critical points
= Benaim (1999): constructs a Lyapunov function around the saddle manifold

UNIVERSITY OF
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*
Small and Large

. Theorem 4.3 (Small §): If € O(n~1), almost all initial sequence (x(0))icm
converge to a single cluster.
« Theorem 5.1 (Large f5): If # > C(d)n?, same conclusion holds.
= Proof sketch:
= Dynamics: Gradient flow of interaction energy.
= Energy landscape: Global maxima = Dirac masses
= Lojasiewicz theorem + Benaim

UNIVERSITY OF EACULTY OF
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High Dimensional Results

» Theorem 6.1: In d > 3, clustering occurs for any § > 0

» Theorem 6.3: If d > n, convergence is exponential: ||x,(7) — x*|| < Ce ™ A = 0(e™P)

= Theorem 6.9: If d > n, histogram of inter-particle inner product collapses to 1 in finite

time.
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t t

(d) d=128

(e) d = 512

t

(f) d = 1024

Figure 3. Plots of the probability that randomly initialized particles
following (SA) cluster to a single point as a function of ¢ and 8: we graph
the function (, 8) — P(z,(0),...,an (0))~oy ({{z1(t),z2(t)) = 1 — 6}), which
is equal to (£,8) = P(z)(0).....00(0))~oa.i#i fixea ({{Z1(E), 22(t)) = 1 - 6})
by permutation equivariance. We compute this function by generating
the average of the histogram of {(z;(t),z;(t)) =1 —6: (4,7) € [n]?,i #
4} over 2'° different realizations of initial sequences. Here, § = 1072,
n = 32, while d varies. We see that the curve ', 5 defined in (6.12)
approximates the actual phase transition with increasing accuracy as d
grows, as implied by Theorem 6.9.
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Future Research (Maybe course project :) )

= Comparing Encoder-

Mixture
only and Decoder-only  pistribution
architectures

« What does the mixture Enbeddin
distribution look like?

Patch

Embedding

Input

Time Series

Yao et al. “Towards neural scaling laws for time series foundation
models.” ICLR 2025
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